scholarly journals A 3D-psoriatic skin model for dermatological testing: The impact of culture conditions

2016 ◽  
Vol 8 ◽  
pp. 268-276 ◽  
Author(s):  
Alexandra Duque-Fernandez ◽  
Lydia Gauthier ◽  
Mélissa Simard ◽  
Jessica Jean ◽  
Isabelle Gendreau ◽  
...  
2020 ◽  
Vol 21 (15) ◽  
pp. 5215 ◽  
Author(s):  
Mélissa Simard ◽  
Sophie Morin ◽  
Geneviève Rioux ◽  
Rachelle Séguin ◽  
Estelle Loing ◽  
...  

Pathological and healthy skin models were reconstructed using similar culture conditions according to well-known tissue engineering protocols. For both models, cyclic nucleotide enhancers were used as additives to promote keratinocytes’ proliferation. Cholera toxin (CT) and isoproterenol (ISO), a beta-adrenergic agonist, are the most common cAMP stimulators recommended for cell culture. The aim of this study was to evaluate the impact of either CT or ISO on the pathological characteristics of the dermatosis while producing a psoriatic skin model. Healthy and psoriatic skin substitutes were produced according to the self-assembly method of tissue engineering, using culture media supplemented with either CT (10−10 M) or ISO (10−6 M). Psoriatic substitutes produced with CT exhibited a more pronounced psoriatic phenotype than those produced with ISO. Indeed, the psoriatic substitutes produced with CT had the thickest epidermis, as well as contained the most proliferating cells and the most altered expression of involucrin, filaggrin, and keratin 10. Of the four conditions under study, psoriatic substitutes produced with CT had the highest levels of cAMP and enhanced expression of adenylate cyclase 9. Taken together, these results suggest that high levels of cAMP are linked to a stronger psoriatic phenotype.


2009 ◽  
Vol 53 (1) ◽  
pp. 19-25 ◽  
Author(s):  
Jessica Jean ◽  
Marc Lapointe ◽  
Jacques Soucy ◽  
Roxane Pouliot

2021 ◽  
Vol 11 ◽  
Author(s):  
João Calmeiro ◽  
Luís Mendes ◽  
Iola F. Duarte ◽  
Catarina Leitão ◽  
Adriana R. Tavares ◽  
...  

Dendritic cell (DC)-based antitumor vaccines have proven to be a safe approach, but often fail to generate robust results between trials. Translation to the clinic has been hindered in part by the lack of standard operation procedures for vaccines production, namely the definition of optimal culture conditions during ex-vivo DC differentiation. Here we sought to compare the ability of three clinical grade serum-free media, DendriMACS, AIM-V, and X-VIVO 15, alongside with fetal bovine serum-supplemented Roswell Park Memorial Institute Medium (RPMI), to support the differentiation of monocyte-derived DCs (Mo-DCs). Under these different culture conditions, phenotype, cell metabolomic profiles, response to maturation stimuli, cytokines production, allogenic T cell stimulatory capacity, as well as priming of antigen-specific CD8+ T cells and activation of autologous natural killer (NK) cells were analyzed. Immature Mo-DCs differentiated in AIM-V or X-VIVO 15 presented lower levels of CD1c, CD1a, and higher expression of CD11c, when compared to cells obtained with DendriMACS. Upon stimulation, only AIM-V or X-VIVO 15 DCs acquired a full mature phenotype, which supports their enhanced capacity to polarize T helper cell type 1 subset, to prime antigen-specific CD8+ T cells and to activate NK cells. CD8+ T cells and NK cells resulting from co-culture with AIM-V or X-VIVO 15 DCs also showed superior cytolytic activity. 1H nuclear magnetic resonance-based metabolomic analysis revealed that superior DC immunostimulatory capacities correlate with an enhanced catabolism of amino acids and glucose. Overall, our data highlight the impact of critically defining the culture medium used in the production of DCs for clinical application in cancer immunotherapy. Moreover, the manipulation of metabolic state during differentiation could be envisaged as a strategy to enhance desired cell characteristics.


2014 ◽  
Vol 9 (2) ◽  
pp. 1934578X1400900 ◽  
Author(s):  
Alejandra T. Fazio ◽  
Mónica T. Adler ◽  
Marta S. Maier

A strain of the lichen mycobiont of Ramalina celastri, isolated from ascospores, was cultured axenically on two solid media containing high amounts of the carbon source: sucrose in MY10 and mannitol in BMRM. Usnic acid, the major cortical lichen metabolite, was produced by the colonies grown on MY10, with a very high yield (7.9%) in comparison with that in the lichen thallus. Mycelia grown on BMRM did not produce the lichen secondary metabolite and rendered triacylglycerides (8.5%) instead. Analysis by GC-MS of the fatty acid methyl esters revealed the presence of oleic, palmitic and stearic acids as the main triacylglyceride constituents. The present results highlight the impact of the culture conditions on the lichen mycobiont secondary metabolism and confirm that MY10 is a useful medium to obtain usnic acid from mycobionts in the laboratory.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Maimonah-Eissa Al-Masawa ◽  
Wan Safwani Wan Kamarul Zaman ◽  
Kien-Hui Chua

AbstractThe scarcity of chondrocytes is a major challenge for cartilage tissue engineering. Monolayer expansion is necessary to amplify the limited number of chondrocytes needed for clinical application. Growth factors are often added to improve monolayer culture conditions, promoting proliferation, and enhancing chondrogenesis. Limited knowledge on the biosafety of the cell products manipulated with growth factors in culture has driven this study to evaluate the impact of growth factor cocktail supplements in chondrocyte culture medium on chondrocyte genetic stability and tumorigenicity. The growth factors were basic fibroblast growth factor (b-FGF), transforming growth factor β2 (TGF β2), insulin-like growth factor 1 (IGF-1), insulin-transferrin-selenium (ITS), and platelet-derived growth factor (PD-GF). Nasal septal chondrocytes cultured in growth factor cocktail exhibited a significantly high proliferative capacity. Comet assay revealed no significant DNA damage. Flow cytometry showed chondrocytes were mostly at G0-G1 phase, exhibiting normal cell cycle profile with no aneuploidy. We observed a decreased tumour suppressor genes’ expression (p53, p21, pRB) and no TP53 mutations or tumour formation after 6 months of implantation in nude mice. Our data suggest growth factor cocktail has a low risk of inducing genotoxic and tumorigenic effects on chondrocytes up to passage 6 with 16.6 population doublings. This preclinical tumorigenicity and genetic instability evaluation is crucial for further clinical works.


Sign in / Sign up

Export Citation Format

Share Document