SREBP transcription factors: master regulators of lipid homeostasis

Biochimie ◽  
2004 ◽  
Vol 86 (11) ◽  
pp. 839-848 ◽  
Author(s):  
Delphine Eberlé ◽  
Bronwyn Hegarty ◽  
Pascale Bossard ◽  
Pascal Ferré ◽  
Fabienne Foufelle
2018 ◽  
Vol 19 (12) ◽  
pp. 3737 ◽  
Author(s):  
Danny Ng ◽  
Jayami Abeysinghe ◽  
Maedeh Kamali

Being sessile, plants rely on intricate signaling pathways to mount an efficient defense against external threats while maintaining the cost balance for growth. Transcription factors (TFs) form a repertoire of master regulators in controlling various processes of plant development and responses against external stimuli. There are about 58 families of TFs in plants and among them, six major TF families (AP2/ERF (APETALA2/ethylene responsive factor), bHLH (basic helix-loop-helix), MYB (myeloblastosis related), NAC (no apical meristem (NAM), Arabidopsis transcription activation factor (ATAF1/2), and cup-shaped cotyledon (CUC2)), WRKY, and bZIP (basic leucine zipper)) are found to be involved in biotic and abiotic stress responses. As master regulators of plant defense, the expression and activities of these TFs are subjected to various transcriptional and post-transcriptional controls, as well as post-translational modifications. Many excellent reviews have discussed the importance of these TFs families in mediating their downstream target signaling pathways in plant defense. In this review, we summarize the molecular regulatory mechanisms determining the expression and activities of these master regulators themselves, providing insights for studying their variation and regulation in crop wild relatives (CWR). With the advance of genome sequencing and the growing collection of re-sequencing data of CWR, now is the time to re-examine and discover CWR for the lost or alternative alleles of TFs. Such approach will facilitate molecular breeding and genetic improvement of domesticated crops, especially in stress tolerance and defense responses, with the aim to address the growing concern of climate change and its impact on agriculture crop production.


2008 ◽  
Vol 411 (2) ◽  
pp. e5-e7 ◽  
Author(s):  
Angie Rizzino

Three transcription factors, Sox2, Oct-3/4 and Nanog, have been identified as master regulators that orchestrate mammalian embryogenesis as well as the self-renewal and pluripotency of ES (embryonic stem) cells. Efforts to understand how these transcription factors function have shown that they have a special property in common. Small changes in the expression of any one of these factors dramatically alter the self-renewal and pluripotency of ES cells. In this way, each functions as a molecular rheostat to control the behaviour of ES cells. Recent studies have begun to examine the molecular mechanisms that regulate the levels of these transcription factors. In this issue of the Biochemical Journal, Mullin and co-workers report that Nanog can self-associate to form dimers. Importantly, they also show that the domain responsible for dimerization is also needed for Nanog to sustain the self-renewal of ES cells in the absence of the cytokine LIF (leukaemia inhibitory factor). On the basis of their studies, they propose a novel mechanism for regulating the interactions between Nanog and other nuclear proteins.


2012 ◽  
Vol 12 (11) ◽  
pp. 799-804 ◽  
Author(s):  
Kenneth J. Oestreich ◽  
Amy S. Weinmann

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Ligang Fan ◽  
Tingting Wang ◽  
Canfeng Hua ◽  
Wenju Sun ◽  
Xiaoyu Li ◽  
...  

Abstract Pseudomonas syringae is a Gram-negative and model pathogenic bacterium that causes plant diseases worldwide. Here, we set out to identify binding motifs for all 301 annotated transcription factors (TFs) of P. syringae using HT-SELEX. We successfully identify binding motifs for 100 TFs. We map functional interactions between the TFs and their targets in virulence-associated pathways, and validate many of these interactions and functions using additional methods such as ChIP-seq, electrophoretic mobility shift assay (EMSA), RT-qPCR, and reporter assays. Our work identifies 25 virulence-associated master regulators, 14 of which had not been characterized as TFs before.


Cell Cycle ◽  
2012 ◽  
Vol 11 (18) ◽  
pp. 3380-3383 ◽  
Author(s):  
Olivier Elemento ◽  
Mark A. Rubin ◽  
David S. Rickman

2017 ◽  
Vol 214 (7) ◽  
pp. 1861-1876 ◽  
Author(s):  
Difeng Fang ◽  
Jinfang Zhu

CD4 T cells, including T regulatory cells (Treg cells) and effector T helper cells (Th cells), and recently identified innate lymphoid cells (ILCs) play important roles in host defense and inflammation. Both CD4 T cells and ILCs can be classified into distinct lineages based on their functions and the expression of lineage-specific genes, including those encoding effector cytokines, cell surface markers, and key transcription factors. It was first recognized that each lineage expresses a specific master transcription factor and the expression of these factors is mutually exclusive because of cross-regulation among these factors. However, recent studies indicate that the master regulators are often coexpressed. Furthermore, the expression of master regulators can be dynamic and quantitative. In this review, we will first discuss similarities and differences between the development and functions of CD4 T cell and ILC subsets and then summarize recent literature on quantitative, dynamic, and cell type–specific balance between the master transcription factors in determining heterogeneity and plasticity of these subsets.


2008 ◽  
Vol 40 (12) ◽  
pp. 1445-1453 ◽  
Author(s):  
Xianwen Yu ◽  
Chee Peng Ng ◽  
Hermann Habacher ◽  
Sudipto Roy

2003 ◽  
Vol 23 (7) ◽  
pp. 2587-2599 ◽  
Author(s):  
Valeria Giandomenico ◽  
Maria Simonsson ◽  
Eva Grönroos ◽  
Johan Ericsson

ABSTRACT Members of the SREBP family of transcription factors control cholesterol and lipid homeostasis and play important roles during adipocyte differentiation. The transcriptional activity of SREBPs is dependent on the coactivators p300 and CBP. We now present evidence that SREBPs are acetylated by the intrinsic acetyltransferase activity of p300 and CBP. In SREBP1a, the acetylated lysine residue resides in the DNA-binding domain of the protein. Coexpression with p300 dramatically increases the expression of both SREBP1a and SREBP2, and this effect is dependent on the acetyltransferase activity of p300, indicating that acetylation of SREBPs regulates their stability. Indeed, acetylation or mutation of the acetylated lysine residue in SREBP1a stabilizes the protein. We demonstrate that the acetylated residue in SREBP1a is also targeted by ubiquitination and that acetylation inhibits this process. Thus, our studies define acetylation-dependent stabilization of transcription factors as a novel mechanism for coactivators to regulate gene expression.


Sign in / Sign up

Export Citation Format

Share Document