Ice-free area expansion compounds the non-native species threat to Antarctic terrestrial biodiversity

2019 ◽  
Vol 232 ◽  
pp. 253-257 ◽  
Author(s):  
Grant A. Duffy ◽  
Jasmine R. Lee
2019 ◽  
Author(s):  
Grant Duffy ◽  
Jasmine R Lee

Warming across ice-covered regions will result in changes to both the physical and climatic environment, revealing new ice-free habitat and new climatically suitable habitats for non-native species establishment. Recent studies have independently quantified each of these aspects in Antarctica, where ice-free areas form crucial habitat for the majority of terrestrial biodiversity. Here we synthesise projections of Antarctic ice-free area expansion, recent spatial predictions of non-native species risk, and the frequency of human activities to quantify how these facets of anthropogenic change may interact now and in the future. Under a high-emissions future climate scenario, over a quarter of ice-free area and over 80 % of the ~14 thousand km2 of newly uncovered ice-free area could be vulnerable to invasion by one or more of the modelled non-native species by the end of the century. Ice-free areas identified as vulnerable to non-native species establishment were significantly closer to human activity than unsuitable areas were. Furthermore, almost half of the new vulnerable ice-free area is within 20 km of a site of current human activity. The Antarctic Peninsula, where human activity is heavily concentrated, will be at particular risk. The implications of this for conservation values of Antarctica and the management efforts required to mitigate against it are in need of urgent consideration.


2019 ◽  
Vol 31 (6) ◽  
pp. 304-314 ◽  
Author(s):  
Shaun T. Brooks ◽  
Pablo Tejedo ◽  
Tanya A. O'Neill

AbstractThe small ice-free areas of Antarctica provide an essential habitat for most evident terrestrial biodiversity, as well as being disproportionately targeted by human activity. Visual detection of disturbance within these environments has become a useful tool for measuring areas affected by human impact, but questions remain as to what environmental consequences such disturbance actually has. To answer such questions, several factors must be considered, including the climate and biotic and abiotic characteristics. Although a body of research has established the consequences of disturbance at given locations, this paper was conceived in order to assess whether their findings could be generalized as a statement across the Antarctic continent. From a review of 31 studies within the Maritime Antarctic, Continental Antarctic and McMurdo Dry Valleys regions, we found that 83% confirmed impacts in areas of visible disturbance. Disturbance was found to modify the physical environment, consequently reducing habitat suitability as well as directly damaging biota. Visible disturbance was also associated with hydrocarbon and heavy metal contamination and non-native species establishment, reflecting the pressures from human activity in these sites. The results add significance to existing footprint measurements based on visual analysis, should aid on-the-ground appreciation of probable impacts in sites of disturbance and benefit environmental assessment processes.


2021 ◽  
Vol 9 ◽  
Author(s):  
José Marcelino ◽  
Paulo Borges ◽  
Isabel Borges ◽  
Enésima Pereira ◽  
Vasco Santos ◽  
...  

In this paper, we present an extensive checklist of selected arthropods and their distribution in five Islands of the Azores (Santa Maria. São Miguel, Terceira, Flores and Pico). Habitat surveys included five herbaceous and four arboreal habitat types, scaling up from native to anthropogenic managed habitats. We aimed to contribute to the ongoing effort to document the terrestrial biodiversity of the world, in particular the Portuguese archipelago of the Azores, as islands harbour a significant portion of unique terrestrial biodiversity. Selection of Arthropoda groups for the current checklist was based on their known richness and abundance (Arachnida, Collembola, Hemiptera, Neuroptera, Coleoptera, Hymenoptera), in almost all terrestrial ecosystems, as well as their importance in current Integrated Pest Management and alternative Biocontrol protocols at large (i.e. hymenopteran parasitoids and beneficial Coleoptera). In addition, we include the list of Dermaptera, Orthoptera, Psocoptera and Thysanoptera species. These assembled groups represent part of the monitoring programme EDEN Azores (2008-2014), where all Arthropod fauna, at all strata, within nine representative habitats of the abovementioned five Islands of the Azores was recorded. In this study, a total of 116,523 specimens, belonging to 483 species and subspecies of selected groups of arthropods, are reported by order, family and, when possible, genus and species. Hymenopteran, mostly parasitoids, accounted for the most represented taxa across all the monitoring and sampling phase of EDEN Azores (193 species and mophospecies), followed by Coleoptera (95 species); Collembola (89 species); and Araneae (72 species). A total of 37 non-native species are reported for the first time in the Azores. Coleoptera: Asaphidion flavipes (Linnaeus, 1761) (Carabidae); Tachyporus dispar (Paykull, 1789) (Staphylinidae). Hemiptera: Acrosternum heegeri Fieber, 1861 (Pentatomidae). Collembola: Entomobrya regularis Stach, 1963 (Entomobryidae); Lepidocyrtus lusitanicus piezoensis (Simón-Benito, 2007) (Entomobryidae); Jordanathrix articulata (Ellis, 1974) (Sminthuridae); Sminthurinus quadrimaculatus (Ryder, 1879) (Katiannidae); Himalanura sp. (Entomobryidae); Protophorura sp. (Onychiuridae). Hymenoptera, parasitoids: Aphidius colemani Viereck, 1912 (Braconidae); Aphidius ervi Haliday, 1834 (Braconidae); Aphidius matricariae Viereck, 1912 (Braconidae); Aphidius rhopalosiphi Stefani-Perez, 1902 (Braconidae); Aphidius rosae (Haliday, 1834) (Braconidae); Aphidius urticae Haliday, 1834 (Braconidae); Centistidea ectoedemiae Rohwer, 1914 (Braconidae); Meteorus unicolor (Wesmael, 1835) (Braconidae); Meteorus collaris (Spin.) Hal. – Ruschka, Fulmek, 1915 (Braconidae); Orthostigma cratospilum (Thomson, 1895) (Braconidae); Orthostigma latriventris Ratzeburg, 1844 (Braconidae); two other species of Orthostigma sp.; Pseudopezomachus bituberculatus (Marshall, 1905) (Braconidae); Tanycarpa punctata (van Achterberg, 1976) (Braconidae); Gonatopus clavipes (Thunberg, 1827) (Dryinidae). New genera not previously recorded for the Azores include: Pycnetron sp. (Chalcidoidea: Pteromalidae); four species of Aspilota sp. (Braconidae: Alysiinae); four species of Chorebus sp. (Braconidae: Aphidiinae: Alysiinae); Microgaster sp. (Braconidae: Microgastrinae); Homolobus sp. (Braconidae: Homolobinae); Lodbrokia sp. (Braconidae: Alysiinae). These 37 taxa were found in several Islands and five are new species for Flores Island, 10 species are new for Pico Island, 12 species are new for Terceira Island, 19 species are new for S. Miguel Island and five species are new for S. Maria Island. Additional species records for the Islands included: Flores (5 Collembola, 9 Araneae; 2 Hemiptera; 8 Coleoptera, 8 Hymenoptera), Pico (4 Collembola; 7 Araneae; 4 Hemiptera; 11 Coleoptera; 9 Hymenoptera), Terceira (4 Collembola; 1 Araneae; 3 Hymenoptera), S. Miguel (1 Araneae; 2 Coleoptera; 3 Hymenoptera), S. Maria (5 Collembola; 3 Araneae; 2 Hemiptera; 2 Hymenoptera).


2018 ◽  
Vol 93 (6) ◽  
pp. 711-719 ◽  
Author(s):  
K. Chaisiri ◽  
S. Dusitsittipon ◽  
N. Panitvong ◽  
T. Ketboonlue ◽  
S. Nuamtanong ◽  
...  

AbstractInvasive species constitute one of the most serious threats to biodiversity and ecosystems, and they potentially cause economic problems and impact human health. The globally invasive New Guinea flatworm, Platydemus manokwari (Platyhelminthes: Geoplanidae), has been identified as a threat to terrestrial biodiversity, particularly soil-dwelling native species (e.g. molluscs, annelids and other land planarians), and is listed among 100 of the world's worst invasive alien species. We report here, for the first time, P. manokwari occurrences in many locations throughout Thailand, using voluntary digital public participation from the social network portals associated with the Thailand Biodiversity Conservation Group and collections of living flatworm specimens. Mitochondrial cytochrome c oxidase subunit I (COI) sequences confirmed that all collected flatworms were P. manokwari and placed them in the “world haplotype” clade alongside other previously reported specimens from France, Florida (USA), Puerto Rico, Singapore, French Polynesia, New Caledonia, and the Solomon Islands. In addition, infective stage larvae (L3) of the nematode Angiostrongylus malaysiensis were found in the flatworm specimens, with a 12.4% infection rate (15/121 specimens examined). Platydemus manokwari occurrence in Thailand and its capacity to carry L3 of Angiostrongylus should be of concern to biodiversity conservation and human health practitioners, because this invasive flatworm species may be involved in the life cycle of angiostrongylid worms in Thailand.


2020 ◽  
Vol 637 ◽  
pp. 195-208 ◽  
Author(s):  
EM DeRoy ◽  
R Scott ◽  
NE Hussey ◽  
HJ MacIsaac

The ecological impacts of invasive species are highly variable and mediated by many factors, including both habitat and population abundance. Lionfish Pterois volitans are an invasive marine species which have high reported detrimental effects on prey populations, but whose effects relative to native predators are currently unknown for the recently colonized eastern Gulf of Mexico. We used functional response (FR) methodology to assess the ecological impact of lionfish relative to 2 functionally similar native species (red grouper Epinephelus morio and graysby grouper Cephalopholis cruentata) foraging in a heterogeneous environment. We then combined the per capita impact of each species with their field abundance to obtain a Relative Impact Potential (RIP). RIP assesses the broader ecological impact of invasive relative to native predators, the magnitude of which predicts community-level negative effects of invasive species. Lionfish FR and overall consumption rate was intermediate to that of red grouper (higher) and graysby grouper (lower). However, lionfish had the highest capture efficiency of all species, which was invariant of habitat. Much higher field abundance of lionfish resulted in high RIPs relative to both grouper species, demonstrating that the ecological impact of lionfish in this region will be driven mainly by high abundance and high predator efficiency rather than per capita effect. Our comparative study is the first empirical assessment of lionfish per capita impact and RIP in this region and is one of few such studies to quantify the FR of a marine predator.


2019 ◽  
Vol 3 (1) ◽  
pp. 1-9
Author(s):  
Robert M. Anderson ◽  
Amy M. Lambert

The island marble butterfly (Euchloe ausonides insulanus), thought to be extinct throughout the 20th century until re-discovered on a single remote island in Puget Sound in 1998, has become the focus of a concerted protection effort to prevent its extinction. However, efforts to “restore” island marble habitat conflict with efforts to “restore” the prairie ecosystem where it lives, because of the butterfly’s use of a non-native “weedy” host plant. Through a case study of the island marble project, we examine the practice of ecological restoration as the enactment of particular norms that define which species are understood to belong in the place being restored. We contextualize this case study within ongoing debates over the value of “native” species, indicative of deep-seated uncertainties and anxieties about the role of human intervention to alter or manage landscapes and ecosystems, in the time commonly described as the “Anthropocene.” We interpret the question of “what plants and animals belong in a particular place?” as not a question of scientific truth, but a value-laden construct of environmental management in practice, and we argue for deeper reflexivity on the part of environmental scientists and managers about the social values that inform ecological restoration.


Sign in / Sign up

Export Citation Format

Share Document