A fusion protein N-cadherin-Fc as an artificial extracellular matrix surface for maintenance of stem cell features

Biomaterials ◽  
2010 ◽  
Vol 31 (20) ◽  
pp. 5287-5296 ◽  
Author(s):  
Xiao-Shan Yue ◽  
Yuta Murakami ◽  
Toshiyuki Tamai ◽  
Masato Nagaoka ◽  
Chong-Su Cho ◽  
...  
2020 ◽  
Vol 18 ◽  
pp. 100531 ◽  
Author(s):  
Bong-Hyuk Choi ◽  
Yun Kee Jo ◽  
Cong Zhou ◽  
Hyon-Seok Jang ◽  
Jin-Soo Ahn ◽  
...  

2020 ◽  
Author(s):  
Reena Singh ◽  
Richard Tan ◽  
Clara Tran ◽  
Thomas Loudovaris ◽  
Helen E. Thomas ◽  
...  

2019 ◽  
Vol 26 (34) ◽  
pp. 6321-6338 ◽  
Author(s):  
Shuaimeng Guan ◽  
Kun Zhang ◽  
Jingan Li

Stem cell transplantation is an advanced medical technology, which brings hope for the treatment of some difficult diseases in the clinic. Attributed to its self-renewal and differential ability, stem cell research has been pushed to the forefront of regenerative medicine and has become a hot topic in tissue engineering. The surrounding extracellular matrix has physical functions and important biological significance in regulating the life activities of cells, which may play crucial roles for in situ inducing specific differentiation of stem cells. In this review, we discuss the stem cells and their engineering application, and highlight the control of the fate of stem cells, we offer our perspectives on the various challenges and opportunities facing the use of the components of extracellular matrix for stem cell attachment, growth, proliferation, migration and differentiation.


2021 ◽  
Author(s):  
Fernanda C. P. Mesquita ◽  
Jacquelynn Morrissey ◽  
Po-Feng Lee ◽  
Gustavo Monnerat ◽  
Yutao Xi ◽  
...  

Decellularized extracellular matrix (dECM) from human atria preserves key native components that directed the cardiac differentiation of hiPSCs to an atrial-like phenotype, yielding a twofold increase of functional atrial-like cells.


Nanomaterials ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 21
Author(s):  
Mina Keshvardoostchokami ◽  
Sara Seidelin Majidi ◽  
Peipei Huo ◽  
Rajan Ramachandran ◽  
Menglin Chen ◽  
...  

Many types of polymer nanofibers have been introduced as artificial extracellular matrices. Their controllable properties, such as wettability, surface charge, transparency, elasticity, porosity and surface to volume proportion, have attracted much attention. Moreover, functionalizing polymers with other bioactive components could enable the engineering of microenvironments to host cells for regenerative medical applications. In the current brief review, we focus on the most recently cited electrospun nanofibrous polymeric scaffolds and divide them into five main categories: natural polymer-natural polymer composite, natural polymer-synthetic polymer composite, synthetic polymer-synthetic polymer composite, crosslinked polymers and reinforced polymers with inorganic materials. Then, we focus on their physiochemical, biological and mechanical features and discussed the capability and efficiency of the nanofibrous scaffolds to function as the extracellular matrix to support cellular function.


Sign in / Sign up

Export Citation Format

Share Document