Characterisation of fuel bound nitrogen in the gasification process and the staged combustion of producer gas from the updraft gasification of softwood pellets

2011 ◽  
Vol 35 (11) ◽  
pp. 4595-4604 ◽  
Author(s):  
C. Mandl ◽  
I. Obernberger ◽  
I.R. Scharler
2012 ◽  
Vol 626 ◽  
pp. 1020-1026
Author(s):  
Muhammad Iqbal Ahmad ◽  
Zainal Alimuddin Zainal Alauddin ◽  
Shahril Nizam Mohamed Soid ◽  
Mohamed Mazlan ◽  
Mohd Huzaifah Yusoff

Biomass is one of the alternatives energy which are abundant, relatively cheap, and widespread availability. This paper is aim to show the process finding according experimental work of wood using suction biomass gasifier. Energy can be extracted from biomass through gasification process. The experiment focuses on woody gasification. A suction biomass gasifier has been built and operated under stable condition which fueled from wood waste and air as gasifying agent. The biomass feeding rate was varied from 3 to 5.5kg/hr. Result show that producer gas contains CO in 20-30% in volume and H2 found to be varying between 14 and16% vol. The low heating value (LHV) from this woody gasification around 4-5 MJ/Nm3. Carbon conversion efficiency also measured as a parameter to indicate biomass-gas conversion.


Author(s):  
Ghulamullah Maitlo ◽  
Rasool Bux Mahar ◽  
Zulfiqar Ali Bhatti ◽  
Imran Nazir

The interest in the thermochemical conversion of biomass for producer gas production since last decade has increased because of the growing attention to the application of sustainable energy resources. Application of biomass resources is a valid alternative to fossil fuels as it is a renewable energy source. The valuable gaseous product obtained through thermochemical conversion of organic material is syngas, whereas the solid product obtained is char. This review deals with the state of the art of biomass gasification technologies and the quality of syngas gathered through the application of different gasifiers along with the effect of different operating parameters on the quality of producer gas. Main steps in gasification process including drying, oxidation, pyrolysis and reduction effects on syngas production and quality are presented in this review. An overview of various types of gasifiers used in lignocellulosic biomass gasification processes, fixed bed and fluidized bed and entrained flow gasifiers are discussed. The effects of various process parameters such as particle size, steam and biomass ratio, equivalence ratio, effects of temperature, pressure and gasifying agents are discussed. Depending on the priorities of several researchers, the optimum value of different anticipated productivities in the gasification process comprising better quality syngas production improved lower heating value, higher syngas production, improved cold gas efficiency, carbon conversion efficiency, production of char and tar have been reviewed.


2019 ◽  
Vol 25 (4) ◽  
pp. 329-339
Author(s):  
João Cardoso ◽  
Valter Silva ◽  
Daniela Eusébio ◽  
Tiago Carvalho ◽  
Paulo Brito

A 2-D numerical simulation approach was implemented to describe the gasification process of olive pomace in a bubbling fluidized bed reactor. The numerical model was validated under experimental gasification runs performed in a 250 kWth quasi-industrial biomass gasifier. The producer gas composition, H2/CO ratio, CH4/H2 ratio, cold gas efficiency and tar content were evaluated. The most suitable applications for the potential use of olive pomace as an energy source in Portugal were assessed based on the results. A techno-economic study and a Monte Carlo sensitivity analysis were performed to assess the feasibility and foresee the main investment risks in conducting olive pomace gasification in small facilities. Results indicated that olive pomace gasification is more suitable for domestic purposes. The low cold gas efficiency of the process (around 20%) turns the process more appropriate for producer gas production in small cogeneration facilities. Olive pomace gasification solutions showed viable economic performance in small cogeneration solutions for agriculture waste-to-energy recovery in olive oil agriculture cooperatives. However, the slender profitability may turn the project unattractive for most investors from a financial standpoint.


Author(s):  
Francesco F. Nicolosi ◽  
Massimiliano Renzi

Abstract In this paper, the authors analyze the feasibility of fuelling a small-scale 3.2 kWe MGT, manufactured by the Dutch company MTT, with a low LHV fuel produced via a gasification process. In particular, a CFD analysis on the combustor of the MGT is carried out in order to assess the behaviour of the component when it is fuelled with a traditional fuel (natural gas) and with a producer gas coming from a gasification process. The operating conditions of the combustor, used as boundary conditions for the simulations, are obtained by analyzing the characteristic performance curves of the turbo-machines used in the MGT. The simulation of the combustion process with methane has been validated using the temperature output from experimental tests and the NOX emissions. A RANS simulation using the Non-Adiabatic Non-Premixed Combustion Model Approach has been adopted. NOX formation has been simulated by the adoption of the extended Zel’dovich mechanism. Both nominal and part load simulations have been performed. This simplified modelling strategy allows to assess the main issues and figures of the combustion process with a reasonable computational effort. The CFD simulations showed that the combustion with a low LHV fuel are feasible but some modifications of the present configuration of the combustor are required, with specific attention to the fuel injection system. Results showed that, with Natural Gas, the average temperature of the exhaust mass flow is 1297 K, the level of CO and NOX referred to the 15% of O2 are respectively less than 1 ppm and 30.365 ppm, respectively. With S the original design of the injector proved to be non-adequate for a proper air and fuel mixing; therefore, a modified design has been proposed with an increased injection section. In the novel design for syngas, a better temperature distribution and lower emissions have been found: an average temperature of the flue gas at the combustor discharge of 1249 K is obtained, and the level of CO and NOX are both less than 1 ppm. The lower operating temperature is determined by the higher fuel flow rate and, in particular, by the high share of inert gases in the fuel. Additional simulations have been run at part load operation to assess the viability of the proposed design also in off-design conditions.


2018 ◽  
Vol 154 ◽  
pp. 01002 ◽  
Author(s):  
Muflih Arisa Adnan ◽  
Mohammad Mozahar Hossain

A new model of CO2 gasification has been developed in the Aspen Plus. The potential of microalgae (N. oculata) for CO2 gasification also has been investigated. The present gasification process utilizes the CO2 at atmospheric pressure as the gasifying agent. The steam is also injected to the gasification to enhance the H2 production. The composition of the producer gas and gasification system efficiency (GSE) are used for performance evaluation. It is found that the CO2 gasification of microalgae produces a producer gas with a high concentration of CO and H2. The GSE indicates that the process works at high performance.


2016 ◽  
Vol 138 (4) ◽  
Author(s):  
A. Gredinger ◽  
D. Schweitzer ◽  
H. Dieter ◽  
G. Scheffknecht

Tars produced during the thermal conversion of coal or especially biomass is one of the major obstacles for the application of gasification systems. They limit the use of the producer gas in engines or turbines or, in further processes like in methanization or conversion to other secondary fuels or chemicals, without further gas cleaning. The determination of the tar content with conventional methods is very time consuming and does not allow continuous online monitoring of the gas quality. One approach to avoid these drawbacks is an automatic system developed at the University of Stuttgart that monitors the tar concentration in the producer gas online and semicontinuous during the gasification process. The technique is based on a flame ionization detector (FID) difference measurement of the hydrocarbons in the producer gas, where the condensable hydrocarbons—the tars—are condensed on a suitable filter material. This work shows the further development of the measurement technique, the choice of a suitable tar filter material for the underlying difference measurement, and a first verification of the system with real producer gas at a 20 kWth bench scale gasifier.


2018 ◽  
Vol 5 (2) ◽  
pp. 443
Author(s):  
Ari Susandy Sanjaya ◽  
S Suhartono ◽  
Herri Susanto

Coal gasification utilization for tea drying unit. Anticipating the rise of fuel oil, the management of a tea plantation and drying plant has considered to substitute its oil consumption with producer gas (gaseous fuel obtained from gasification process). A tea drying unit normally consumes 70 L/h of industrial diesel oil and is operated 10 hours per day. The gasification unit consisted of a down draft fixed bed gasifier (designed capacity of about 100 kg/h), gas cooling and cleaning systems. The gas producer was delivered to the tea processing unit and burned to heat the drying oil: Low calorific value coal (4500 kcal/kg) and wood waste (4000 kcal/kg) have been used as fuel. The gasification unit could be operated as long as 8 hours without refueled since the coal hopper on the toppart of gasifier has a capacity of 1000 kg. Sometimes, the gasification process must be stopped before coal completely consumed due to ash melting inside the gasifier. Combustion of producer gas produced a pale-blue flame, probably due to a lower calorific value of the producer gas or too much excess air. Temperature of heating-air heated by combustion of this producer gas was only up to 96 oC. To achieve the target temperature of 102 oC, a small oil burner must he operated at a rate ofabout 15 L/h. Thus the oil replacement was about 78%.Keywords:  Fuel oil, Producer gas, Downdraft gasifier, Dual fuel, Calorific value, Burner. AbstrakKenaikan harga bahan bakar minyak untuk industri pada awal 2006 telah mendorong berbagai pemikiran dan upaya pemanfaatan bahan bakar alternatif. Sebuah unit gasifikasi telah dipasang di pabrik teh sebagai penyedia bahan bakar alternatif. Unit gasifikasi tersebut terdiri dari gasifier, pendingin, pembersih gas, dan blower. Unit gasifikasi ini ditargetkan untuk dapat menggantikan konsumsi minyak bakar 70 L/jam. Gasifier dirancang untuk kapasitas 120 kg/jam batubara, dan memiliki spesifikasi sebagai berikut: downdraft gasifier; diameter tenggorokan 40 cm, diameter zona reduksi 80 cm. Bunker di bagian atas gasifier memiliki kapasitas sekitar 1000 kg batubara agar gasifier dapat dioperasikan selama 8 jam tanpa pengisian-ulang. Bahan baku gasifikasi yang telah diuji-coba adalah batuhara kalori rendah (4500 kcal/kg) dan limbah kayu (4000 kcal/kg). Gas produser (hasil gasifikasi) dibakar pada burner untuk memanaskan udara pengering teh sampai temperatur target 102 oC. Pembakaran gas produser ternyata menghasilkan api biru pucat yang mungkin disebabkan oleh rendahnya kalor bakar gas dan tingginya udara-lebih. Temperatur udara pengering hasil pemanasan dengan api gas produser hanya mencapai 96 oC. Dan untuk mencapai temperatur udara pengering 102 oC, burner gas prod user harus dibantu dengan burner minyak 15 L/jam. Jadi operasi dual fued ini dapat memberi penghematan minyak bakar 78%.Kata kunci: Minyak bakar, Gas produser, Downdraft gasifier, Dual fuel, Kalor bakar, Burner. 


2018 ◽  
Vol 225 ◽  
pp. 05005 ◽  
Author(s):  
Muddasser Inayat ◽  
Shaharin A. Sulaiman

Biomass gasification often encounters the shortage of biomass supply for continuous operation. Co-gasification of different biomass materials is a promising solution that can address the shortage of biomass supply for the continuous gasification process. However, the effectiveness of co-gasification is not well understood. Furthermore, there is nearly no reported work of co-gasification of two or more biomass materials. In this study, two Malaysian local biomass materials, wood residual and coconut shells were co-gasified in a 33.6 kW thermal capacity downdraft gasifier to investigate the effect of blending ratio the on quality of the producer gas. The results show that producer gas composition increased as coconut shells proportion increased in blends of up to 60%. A blend of 40:60 W/CS results in a synergetic effect as compared to discrete gasification of both feedstock. The maximum H2 and CO were obtained as; 11.46 vol.% and 23.99 vol.% respectively at 40:60 W/CS blending ratio. The results achieved from 40:60 W/CS blend were 16.70% and 10.96% higher as compared to pure wood gasification for H2 and CO respectively. It is concluded that coconut shells can be utilized a substitute of wood residual in form of blends or as discrete feedstock for the continuous gasification process without the change in gasifier geometry.


2016 ◽  
Vol 832 ◽  
pp. 49-54 ◽  
Author(s):  
Marek Baláš ◽  
Martin Lisý ◽  
Jiří Pospíšil

Gasification is one of the technologies for utilization of biomass. Gasification is a transformation process that converts solid fuels into gaseous fuels. The gaseous fuel may be subsequently applied in other technologies with all the benefits that gaseous fuels provide. The principle of biomass gasification is a common knowledge. It is thermochemical decomposition oof the fuel in presence of gasification agent. Heat from the endothermic reaction is obtained by a partial combustion of the fuel (autothermal gasification) or the heat is supplied into a gasifier from the outside (allothermal gasification). Oxygen for the partial combustion is supplied in the gasification medium. Quality, composition and amount of the producer gas depend on many factors which include type of the gasifier, operating temperature and pressure, fuel properties (moisture content) and type and amount of gasification medium. Commonly, air, steam and oxygen and their combinations are used as a gasification medium. Every kind of gasification agents has its significant advantages and disadvantages.Research and analysis of the gasification process must pay special attention to all operating parameters which affect quality and amount of the producer gas that is the efficiency of the conversion itself. Composition of the producer gas, calorific value, and content and composition of impurities are especially observed as these are the basic characteristics directly affecting subsequent application of the gas. Steam addition has a significant impact on gas composition. Steam decomposition into hydrogen and oxygen, and their subsequent reactions increases amount of combustibles, hydrogen, methane and other hydrocarbons. Steam addition in the gasification also affects amount and composition of tar and has a negative impact on heat balance.Energy Institute at the Brno University of Technology has a long tradition in research of biomass gasification in atmospheric fluidized bed reactors. Air was used as a gasification medium. This paper describes our experience with gasification using a mixture of air and steam. We analysed the whole process and in this paper we wish to describe the impact of temperature on outputs of the process, especially temperature of leaving steam and temperature of gasification reactions.


2019 ◽  
Vol 23 (Suppl. 5) ◽  
pp. 1473-1486
Author(s):  
Beno Arbiter ◽  
Niko Samec ◽  
Aleksandar Jovovic ◽  
Filip Kokalj

The applicability is studied of a simplified equilibrium model for prediction of the composition and quality of producer gas from gasification of different waste. A simplified equilibrium model of stoichiometric type based on system thermodynamic equilibrium has been developed in the form of a stand-alone computer application. Standard numerical methods have been implemented for solving the mathematical problem formulation. The model`s predicted results have been compared with the published results for biomass and some waste types - municipal solid wastes and refuse derived fuels. Results are included for a bubbling fluidized bed and downdraft fixed bed allothermal gasification, also for catalytic supported gasification. Producer gas predictions by calibrated and non-calibrated versions of the simplified equilibrium model have been studied. The accuracy of these predictions has been evaluated. The results obtained by the simplified equilibrium model have confirmed that such model is a very useful tool for studying the gasification process for municipal solid wastes and refuse derived fuels process parameters for two mostly implemented gasifier types.


Sign in / Sign up

Export Citation Format

Share Document