Experimental of Wood Gasification in Suction Biomass Gasifier

2012 ◽  
Vol 626 ◽  
pp. 1020-1026
Author(s):  
Muhammad Iqbal Ahmad ◽  
Zainal Alimuddin Zainal Alauddin ◽  
Shahril Nizam Mohamed Soid ◽  
Mohamed Mazlan ◽  
Mohd Huzaifah Yusoff

Biomass is one of the alternatives energy which are abundant, relatively cheap, and widespread availability. This paper is aim to show the process finding according experimental work of wood using suction biomass gasifier. Energy can be extracted from biomass through gasification process. The experiment focuses on woody gasification. A suction biomass gasifier has been built and operated under stable condition which fueled from wood waste and air as gasifying agent. The biomass feeding rate was varied from 3 to 5.5kg/hr. Result show that producer gas contains CO in 20-30% in volume and H2 found to be varying between 14 and16% vol. The low heating value (LHV) from this woody gasification around 4-5 MJ/Nm3. Carbon conversion efficiency also measured as a parameter to indicate biomass-gas conversion.

2019 ◽  
Vol 25 (3) ◽  
pp. 217-228
Author(s):  
Ivana Cekovic ◽  
Nebojsa Manic ◽  
Dragoslava Stojiljkovic ◽  
Marta Trninic ◽  
Dusan Todorovic ◽  
...  

A thermochemical equilibrium model is formulated for wood chips downdraft gasification. Steady state ASPEN Plus simulator was utilized to evaluate producer gas composition and low heating value. Three cases are considered, due to mathematical model developed issues, and described in details. Experimental work was carried out within commercial small-scale CHP system where twelve beech wood samples were taken. Equivalence ratio is between 0.32 and 0.38 and air-fuel ratio ranges from 1.49 to 1.81, when gasifier capacity is optimal, at 250 kW. Mole fractions of CO2, H2, CO, CH4 and N2, in dry producer gas, are respectively, 16.06-17.64, 17.98-20.33, 13.71-17.26, 1.65-2.89 and 43.21-48.36. Multiple validation approach was applied for model verification. The results are in reasonable agreement with different literature sources (experimental work and modeling) and in a great agreement with the modified equilibrium model developed in Engineering Equation Solver found in the literature. Result deviations are explained by two major facts: wood downdraft gasification experiments are to a certain extent different and the model parameters could not be adjusted enough to fully minimize differences between model results. Predicted low heating value of dry producer gas is between 4.67-5.61 MJ/Nm3.


2014 ◽  
Vol 699 ◽  
pp. 534-539 ◽  
Author(s):  
Bemgba Bevan Nyakuma ◽  
Mojtaba Mazangi ◽  
Tuan Amran Tuan Abdullah ◽  
Anwar Johari ◽  
Arshad Ahmad ◽  
...  

The gasification of EFB briquette was investigated in a fixed bed tubular reactor to examine the effects of temperature on gas composition, heating value and cold conversion efficiency.The resultsrevealedthat H2 gas composition increased from 17.17 mol. % to 29.67 mol. % with increasing temperature from 600°C to 700°C at an equivalence ratio (ER) of 0.4. The heating value (HHV) of the producer gas increased from 6.18 MJ/Nm3 to 7.64 MJ/Nm3 and cold gas efficiency increased from 35.19% to 43.50% with increasing temperature during gasification. However, carbon conversion efficiency increased only marginally from 31.85% to 32.84% while a significant quantity of char (~ 21%) was produced per unit mass of EFB briquette. The results indicate that higher temperatures are required to increase the overall efficiency of EFB briquette gasification in a fixed bed tubular reactor.


2020 ◽  
Vol 5 (2) ◽  
pp. 22-28
Author(s):  
Fatin Zafirah Mansur ◽  
Che Ku Mohammad Faizal ◽  
N. A. Fazli ◽  
S. M. Atnaw ◽  
S. A. Sulaiman

In this work, a comparative analysis of the gasification process of sawdust (SW) and sawdust pellet (SWP) utilizing a downdraft gasifier was performed. The gasification was conducted in a research-scale fixed-bed gasifier applying air as an oxidizing agent. The comparison between the raw (sawdust, SW) and treated biomass (sawdust pellet, SWP) was investigated for the syngas composition and gasification performance at the fixed condition of gasification temperature at 750 °C and equivalence ratio of 0.25. The gasification performance was tabulated in the form of heating value of the syngas (HHVsyngas), gasification efficiency (ηGE) and carbon conversion efficiency (ηCCE). It was found out that SWP produced the highest H2 and the lowest CO2. Furthermore, SWP also present the better gasification performance than SW. SWP achieved the high HHVsyngas, ηGE, and ηCCE at 4.2152 MJ/Nm3, 24% and 37%, respectively.


Author(s):  
Edson Batista da Silva ◽  
Marcelo Assato ◽  
Rosiane Cristina de Lima

Usually, the turbogenerators are designed to fire a specific fuel, depending on the project of these engines may be allowed the operation with other kinds of fuel compositions. However, it is necessary a careful evaluation of the operational behavior and performance of them due to conversion, for example, from natural gas to different low heating value fuels. Thus, this work describes strategies used to simulate the performance of a single shaft industrial gas turbine designed to operate with natural gas when firing low heating value fuel, such as biomass fuel from gasification process or blast furnace gas (BFG). Air bled from the compressor and variable compressor geometry have been used as key strategies by this paper. Off-design performance simulations at a variety of ambient temperature conditions are described. It was observed the necessity for recovering the surge margin; both techniques showed good solutions to achieve the same level of safe operation in relation to the original engine. Finally, a flammability limit analysis in terms of the equivalence ratio was done. This analysis has the objective of verifying if the combustor will operate using the low heating value fuel. For the most engine operation cases investigated, the values were inside from minimum and maximum equivalence ratio range.


2015 ◽  
Author(s):  
Luz M. Ahumada ◽  
Arnaldo Verdeza ◽  
Antonio J. Bula

This paper studied, through an experiment design, the significance of particle size, air speed and reactor arrangement for palm shell micro-gasification process in order to optimize the heating value of the syngas obtained. The range of variables was 8 to 13 mm for particle size, 0.8–1.4m/s for air velocity, and updraft or downdraft for the reactor type. It was found that the particle size and air velocity factors were the most significant in the optimization of the output variable, syngas heating value. A heating value of 2.69MJ / Nm3 was obtained using a fixed bed downdraft reactor, with a particle size of 13 mm and 1.4 m/s for air speed; verification of the optimum point of operation under these conditions verified that these operating conditions favor the production of a gas with a high energy value.


Author(s):  
Armin Silaen ◽  
Ting Wang

Numerical simulations of the coal gasification process inside a generic 2-stage entrained-flow gasifier fed with Indonesian coal at approximately 2000 metric ton/day are carried out. The 3D Navier–Stokes equations and eight species transport equations are solved with three heterogeneous global reactions, three homogeneous reactions, and two-step thermal cracking equation of volatiles. The chemical percolation devolatilization (CPD) model is used for the devolatilization process. This study is conducted to investigate the effects of different operation parameters on the gasification process including coal mixture (dry versus slurry), oxidant (oxygen-blown versus air-blown), and different coal distribution between two stages. In the two-stage coal-slurry feed operation, the dominant reactions are intense char combustion in the first stage and enhanced gasification reactions in the second stage. The gas temperature in the first stage for the dry-fed case is about 800 K higher than the slurry-fed case. This calls for attention of additional refractory maintenance in the dry-fed case. One-stage operation yields higher H2, CO and CH4 combined than if a two-stage operation is used, but with a lower syngas heating value. The higher heating value (HHV) of syngas for the one-stage operation is 7.68 MJ/kg, compared with 8.24 MJ/kg for two-stage operation with 75%–25% fuel distribution and 9.03 MJ/kg for two-stage operation with 50%–50% fuel distribution. Carbon conversion efficiency of the air-blown case is 77.3%, which is much lower than that of the oxygen-blown case (99.4%). The syngas heating value for the air-blown case is 4.40 MJ/kg, which is almost half of the heating value of the oxygen-blown case (8.24 MJ/kg).


2018 ◽  
Vol 204 ◽  
pp. 04011
Author(s):  
Woranuch Jangsawang

A down draft biomass gasifier stove with four steps of cleaning gas system was developed to produce the producer gas for replacing LPG for cooking applications in lunch project for the student in rural school area. This project has been implemented at Bangrakam primary school that located at Pitsanuloke Province, Thailand. The biomass fuels used are Mimosa wood twigs. The gasifier stove was developed based on down draft fixed bed gasifier with the maximum fuel capacity of fourteen kilograms. The performance testing of the biomass gasifier stove showed that the heating value of the producer gas is 4.12 MJ/Nm3 with the thermal efficiency in the percentage of 85.49. The results from this study imply that it has high potential to replace LPG with producer gas.


F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 1809 ◽  
Author(s):  
Gilbert John Miito ◽  
Noble Banadda

Agricultural biomass is widely recognized as a clean and renewable energy source, with increasing potential to replace conventional fossil fuels in the energy market. Uganda, like other developing countries, has a high dependency (91%) on wood fuel, leading to environmental degradation. With a coffee production of 233 Metric Tonnes per annum, relating to 46.6 Mega Tonnes of coffee husks from processing, transforming these husks into syngas through gasification can contribute to resolving the existing energy challenges. The objective of this article is to briefly review the energy potential of coffee husks through gasification, and how the gasification process could increase energy recoveries for coffee farmers. Previous  findings indicate that the 46.6 Mega Tonnes per year of coffee husks generated in Uganda, with a heating value of 18.34 MJ/kg, is capable of generating 24 GWh of energy. This will address a 0.7% portion of the energy situation in Uganda, while protecting the environment.


2019 ◽  
Vol 114 ◽  
pp. 07007
Author(s):  
Irina Remkunas ◽  
Igor Donskoy ◽  
Aleksandr Kozlov

In this paper, we developed a method for determining the kinetic constants of partially diffusion-controlled heterogeneous reactions in a porous sample of powder. Studies have been conducted on the experimental data of thermogravimetric analysis of carbon conversion in a stream of CO2, using a new method of processing kinetic curves, to obtain updated values of the kinetic constants under conditions where widely used models are inappropriate. Data obtained can be used for a reliable assessment of the characteristics of the gasification process.


Sign in / Sign up

Export Citation Format

Share Document