Mass and energy balances of an autothermal pilot carbonization unit

2019 ◽  
Vol 120 ◽  
pp. 144-155 ◽  
Author(s):  
Andrea Maria Rizzo ◽  
Marco Pettorali ◽  
Renato Nistri ◽  
David Chiaramonti
2019 ◽  
pp. 646-654
Author(s):  
Jan Iciek ◽  
Kornel Hulak ◽  
Radosław Gruska

The article presents the mass and energy balances of the sucrose crystallization process in a continuous evaporating crystallizer. The developed algorithm allows to assess the working conditions of the continuous evaporating crystallizers and the technological and energy parameters. The energy balance algorithm takes into account the heat released during the crystallization of sucrose, which was analyzed in this study, heat losses to the environment and heat losses due the vapor used for inert gas removal.


2017 ◽  
Vol 11 (6) ◽  
pp. 2799-2813 ◽  
Author(s):  
Colin R. Meyer ◽  
Ian J. Hewitt

Abstract. Meltwater is produced on the surface of glaciers and ice sheets when the seasonal energy forcing warms the snow to its melting temperature. This meltwater percolates into the snow and subsequently runs off laterally in streams, is stored as liquid water, or refreezes, thus warming the subsurface through the release of latent heat. We present a continuum model for the percolation process that includes heat conduction, meltwater percolation and refreezing, as well as mechanical compaction. The model is forced by surface mass and energy balances, and the percolation process is described using Darcy's law, allowing for both partially and fully saturated pore space. Water is allowed to run off from the surface if the snow is fully saturated. The model outputs include the temperature, density, and water-content profiles and the surface runoff and water storage. We compare the propagation of freezing fronts that occur in the model to observations from the Greenland Ice Sheet. We show that the model applies to both accumulation and ablation areas and allows for a transition between the two as the surface energy forcing varies. The largest average firn temperatures occur at intermediate values of the surface forcing when perennial water storage is predicted.


2008 ◽  
Vol 12 (4) ◽  
pp. 75-88 ◽  
Author(s):  
Nenad Ferdelji ◽  
Antun Galovic ◽  
Zvonimir Guzovic

Limitations of traditional first-law analysis, based upon thermodynamic performance of process unit coupled with mass and energy balances, are not a serious limitation when dealing with familiar systems. However, when dealing with more uncongenial, complex ones, it provides incomplete insight for such evaluation. These limitations came from the fact that first-law analysis does not indicate the sources or magnitudes of entropy production, which is, by the second law, essential criterion for scaling losses. An evaluation of plant performance will usually require a comparison of the thermodynamic performance of process units with available data from existing plants. Therefore, exergy analysis is more than useful, providing information about magnitudes of losses and their distribution throughout the system as well. Such analysis is very thankful at the level of process units but applied on higher system levels e.g. the comparison of overall plant performance (total system) or the performance of subsystems, represents the valuable method for indicating where research resources can be directed to best advantage.


Author(s):  
S. Rech ◽  
A. Lazzaretto

A common approach for simulation of energy systems at design and off-design conditions is presented, which uses the same concepts and terminology independently of system dimension, complexity and detail. The paper shows that the higher the dimension of the system, the simpler is the model of each part of the system, but concepts and approach to built the model remain the same, being those commonly used in the literature. The approach consists in organizing energy systems models according to some criteria, which help enhance system models comprehension, and build them more easily. For any dimension and level of detail of the system these criteria consist in identifying the design specification from the environment surrounding the system, choosing the independent variables depending on the nature of the model, organizing them into categories, defining performance curves (characteristic maps) of each part of the system and organizing mass and energy balances into categories. Particular emphasis is given on modeling of system units behavior, which is generally described by the mathematical functions (characteristic maps) linking outflow to inflow variables. Examples of characteristic maps of the system units at each level of detail are shown, and models are then completed by mass, energy and momentum balances linking the behavior of all system units.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Sheng Zhou ◽  
Jining Zhang ◽  
Guoyan Zou ◽  
Shohei Riya ◽  
Masaaki Hosomi

To evaluate the feasibility of swine manure treatment by a proposed Dry Thermophilic Anaerobic Digestion (DT-AD) system, we evaluated the methane yield of swine manure treated using a DT-AD method with rice straw under different C/N ratios and solid retention time (SRT) and calculated the mass and energy balances when the DT-AD system is used for swine manure treatment from a model farm with 1000 pigs and the digested residue is used for forage rice production. A traditional swine manure treatment Oxidation Ditch system was used as the study control. The results suggest that methane yield using the proposed DT-AD system increased with a higher C/N ratio and shorter SRT. Correspondently, for the DT-AD system running with SRT of 80 days, the net energy yields for all treatments were negative, due to low biogas production and high heat loss of digestion tank. However, the biogas yield increased when the SRT was shortened to 40 days, and the generated energy was greater than consumed energy when C/N ratio was 20:1 and 30:1. The results suggest that with the correct optimization of C/N ratio and SRT, the proposed DT-AD system, followed by using digestate for forage rice production, can attain energy self-sufficiency.


Author(s):  
Rafael Noac Feldman ◽  
Elcio Cruz de Oliveira

In a simply manner, data reconciliation is a mathematic treatment with propose of a better quality of the data in a process. Industrial processes typically have a large number of measured variables, which presents some degree of random errors and, less frequently, gross errors. In this text, in order to simplify the notation and terminology we classify all instrument and process errors in these two categories. Any significant systematic bias is included in the gross error category. Data reconciliation allows the measurements to be adjusted (“reconciled”) to satisfy process restrictions (mass and energy balances) and improve measurements quality. The results obtained by data reconciliation can also provide benefits in custody transfer issues. Custody transfer is the responsibility transfer during the storage and transportation of a measured refined product volume. Any loss or gain resulting in a non-trustful measurement is considered as the transportation company responsibility. Therefore, the work objective is to propose a data reconciliation methodology, in a process involving diesel oil custody transfer in a Transpetro’s terminal (Terminal of Sao Caetano do Sul), in order to evaluate and correct possible inconsistencies, besides to know a single measure that represents better the measurement system. In this study we will use data from static measurement in tanks, dynamic measurement in turbine and ultra-sonic device. A database will be obtained in two basic steps: process modeling and data reconciliation to consolidate the mass balance. The reconciled value shows us that there is a bias in the ultra-sonic meter and the turbine meter measurement is more reliable, as expected.


Processes ◽  
2019 ◽  
Vol 7 (8) ◽  
pp. 537 ◽  
Author(s):  
Rafael M. Soares ◽  
Maurício M. Câmara ◽  
Thiago Feital ◽  
José Carlos Pinto

Digital twins are rigorous mathematical models that can be used to represent the operation of real systems. This connection allows for deeper understanding of the actual states of the analyzed system through estimation of variables that are difficult to measure otherwise. In this context, the present manuscript describes the successful implementation of a digital twin to represent a four-stage multi-effect evaporation train from an industrial sugar-cane processing unit. Particularly, the complex phenomenological effects, including the coupling between thermodynamic and fluid dynamic effects, and the low level of instrumentation in the plant constitute major challenges for adequate process operation. For this reason, dynamic mass and energy balances were developed, implemented and validated with actual industrial data, in order to provide process information for decision-making in real time. For example, the digital twin was able to indicate failure of process sensors and to provide estimates for the affected variables in real time, improving the robustness of the operation and constituting an important tool for process monitoring.


Sign in / Sign up

Export Citation Format

Share Document