Development of diarylpentadienone analogues as alpha-glucosidase inhibitor: Synthesis, in vitro biological and in vivo toxicity evaluations, and molecular docking analysis

2020 ◽  
Vol 104 ◽  
pp. 104277
Author(s):  
Maryam Aisyah Abdullah ◽  
Yu-Ri Lee ◽  
Siti Nurulhuda Mastuki ◽  
Sze Wei Leong ◽  
Wan Norhamidah Wan Ibrahim ◽  
...  
2020 ◽  
Vol 15 (4) ◽  
pp. 367
Author(s):  
Mehdi Khoshneviszadeh ◽  
Mohammadsaeid Zahedi ◽  
Qasem Asgari ◽  
Fatemeh Badakhshan ◽  
Amirhossein Sakhteman ◽  
...  

2020 ◽  
Vol 16 (11) ◽  
pp. 949-957
Author(s):  
R Asaithambi ◽  

It is known that α-glucosidase is linked with the antioxidant activity. Therefore, it is of interest to document the in- vitro and molecular docking analysis of chalconeimine derivatives with α-glucosidase (PDB ID: 2ZEO) for further consideration.


PLoS ONE ◽  
2015 ◽  
Vol 10 (5) ◽  
pp. e0126669 ◽  
Author(s):  
Jing Zhou ◽  
Guodi Lu ◽  
Honglan Wang ◽  
Junfeng Zhang ◽  
Jinao Duan ◽  
...  

Molecules ◽  
2020 ◽  
Vol 25 (21) ◽  
pp. 4994 ◽  
Author(s):  
Sajib Rudra ◽  
Afroza Tahamina ◽  
Nazim Uddin Emon ◽  
Md. Adnan ◽  
Mohammad Shakil ◽  
...  

Tetrastigma leucostaphylum (TL) is an important ethnic medicine of Bangladesh used to treat diarrhea and dysentery. Hence, current study has been designed to characterize the antidiarrheal (in vivo) and cytotoxic (in vitro) effects of T. leucostaphylum. A crude extract was prepared with methanol (MTL) and further partitioned into n-hexane (NTL), dichloromethane (DTL), and n-butanol (BTL) fractions. Antidiarrheal activity was investigated using castor oil induced diarrhea, enteropooling, and gastrointestinal transit models, while cytotoxicity was evaluated using the brine shrimp lethality bioassay. In antidiarrheal experiments, all doses (100, 200, and 400 mg/kg) of the DTL extract significantly reduced diarrheal stool frequency, volume and weight of intestinal contents, and gastrointestinal motility in mice. Similarly, in the cytotoxicity assay, all extracts exhibited activity, with the DTL extract the most potent (LC50 67.23 μg/mL). GC-MS analysis of the DTL extract identified 10 compounds, which showed good binding affinity toward M3 muscarinic acetylcholine, 5-HT3, Gut inhibitory phosphodiesterase, DNA polymerase III subunit alpha, and UDP-N-acetylglucosamine-1 carboxyvinyltransferase enzyme targets upon molecular docking analysis. Although ADME/T analyses predicted the drug-likeness and likely safety upon consumption of these bioactive compounds, significant toxicity concerns are evident due to the presence of the known phytotoxin, 2,4-di-tert-butylphenol. In summary, T. leucostaphylum showed promising activity, helping to rationalize the ethnomedicinal use and importance of this plant, its safety profile following both acute and chronic exposure warrants further investigation.


Molecules ◽  
2020 ◽  
Vol 25 (1) ◽  
pp. 189 ◽  
Author(s):  
Yang Yang ◽  
Chong-Yin Shi ◽  
Jing Xie ◽  
Jia-He Dai ◽  
Shui-Lian He ◽  
...  

Moringa oleifera Lam. (MO) is called the “Miracle Tree” because of its extensive pharmacological activity. In addition to being an important food, it has also been used for a long time in traditional medicine in Asia for the treatment of chronic diseases such as diabetes and obesity. In this study, by constructing a library of MO phytochemical structures and using Discovery Studio software, compounds were subjected to virtual screening and molecular docking experiments related to their inhibition of dipeptidyl peptidase (DPP-IV), an important target for the treatment of type 2 diabetes. After the four-step screening process, involving screening for drug-like compounds, predicting the absorption, distribution, metabolism, excretion, and toxicity (ADME/T) of pharmacokinetic properties, LibDock heatmap matching analysis, and CDOCKER molecular docking analysis, three MO components that were candidate DPP-IV inhibitors were identified and their docking modes were analyzed. In vitro activity verification showed that all three MO components had certain DPP-IV inhibitory activities, of which O-Ethyl-4-[(α-l-rhamnosyloxy)-benzyl] carbamate (compound 1) had the highest activity (half-maximal inhibitory concentration [IC50] = 798 nM). This study provides a reference for exploring the molecular mechanisms underlying the anti-diabetic activity of MO. The obtained DPP-IV inhibitors could be used for structural optimization and in-depth in vivo evaluation.


Sign in / Sign up

Export Citation Format

Share Document