Dual function of programmed cell death 10 (PDCD10) in drug resistance

2018 ◽  
Vol 101 ◽  
pp. 129-136 ◽  
Author(s):  
Cagri Urfali-Mamatoglu ◽  
Hasan Hüseyin Kazan ◽  
Ufuk Gündüz
Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 3247
Author(s):  
Lingxiao Ye ◽  
Zhengxin Zhu ◽  
Xiaochuan Chen ◽  
Haoran Zhang ◽  
Jiaqi Huang ◽  
...  

Binding of programmed cell death ligand 1 (PD-L1) to its receptor programmed cell death protein 1 (PD-1) can lead to the inactivation of cytotoxic T lymphocytes, which is one of the mechanisms for immune escape of tumors. Immunotherapy based on this mechanism has been applied in clinic with some remaining issues such as drug resistance. Exosomal PD-L1 derived from tumor cells is considered to play a key role in mediating drug resistance. Here, the effects of various tumor-derived exosomes and tumor-derived exosomal PD-L1 on tumor progression are summarized and discussed. Researchers have found that high expression of exosomal PD-L1 can inhibit T cell activation in in vitro experiments, but the function of exosomal PD-L1 in vivo remains controversial. In addition, the circulating exosomal PD-L1 has high potential to act as an indicator to evaluate the clinical effect. Moreover, therapeutic strategy targeting exosomal PD-L1 is discussed, such as inhibiting the biogenesis or secretion of exosomes. Besides, some specific methods based on the strategy of inhibiting exosomes are concluded. Further study of exosomal PD-L1 may provide an effective and safe approach for tumor treatment, and targeting exosomal PD-L1 by inhibiting exosomes may be a potential method for tumor treatment.


1998 ◽  
Vol 16 (11) ◽  
pp. 3674-3690 ◽  
Author(s):  
D M Bradshaw ◽  
R J Arceci

For cytotoxic agents to have an effect on tumor cells, drugs must first be transported into the cell, potentially be metabolized to an active form, and interact appropriately with target molecules. A final common pathway of cytotoxic agents is usually the initiation of programmed cell death, or apoptosis. Tumor cells overcome the effects of cytotoxic agents at one or more of these levels. The classic multidrug-resistance (MDR) phenotype, as mediated by the drug efflux pump, P-glycoprotein, is one of the most extensively studied mechanisms of drug resistance. Additional drug transporters, such as the multidrug resistance-associated proteins (MRPs), have also been identified and can convey drug-resistance phenotypes. Important questions remain as to how and whether such transport systems can be specifically measured and effectively targeted to improve therapeutic outcomes. Furthermore, alterations in drug targets, drug metabolism, repair of DNA damage caused by drugs, and the inability to initiate programmed cell death can all contribute to drug resistance and must be ultimately considered in the explanation of tumor-cell resistance to therapy. Continued exploration of the pharmacologic methods to circumvent drug resistance, as well as strategies that involve targeted therapy and immunomodulation, should increase the specificity and efficacy of treatments for patients with cancer.


2016 ◽  
Vol 7 (7) ◽  
pp. 4117-4124 ◽  
Author(s):  
Mun Juinn Chow ◽  
Cynthia Licona ◽  
Giorgia Pastorin ◽  
Georg Mellitzer ◽  
Wee Han Ang ◽  
...  

Varying the arene ligand on organoruthenium compounds induced the differential activation of ER stress pathways, leading to non-apoptotic programmed cell death and bypassing drug resistance mechanisms.


2021 ◽  
Author(s):  
Hilal Kalkan

Apoptosis plays many vital roles in maintaining organ homeostasis and represents type I programmed cell death. Programmed cell death happens when the DNA damage is irremediable and has two important pathways, the intrinsic death pathway also known as the mitochondrial pathway, and the extrinsic programmed cell death pathway. Any defects in the regulation of these crucial pathways have been associated with many disorders, most importantly cancer. Therefore, understanding the molecular basis of apoptosis is essential for the treatment of incurable cancer. To date, several anti-cancer drugs have been developed by targeting anti-apoptotic proteins, which are upregulated in many cancers. Nonetheless, a disease progression often time warranted due to the deregulation of several anti or pro-apoptotic proteins which also contribute to drug resistance. Hence, it is important to understand the maintenance and counteraction of apoptosis and improve successful new pharmacological applications of cell death mechanisms for future therapies. This chapter discusses the mechanism of apoptosis and emerging principles of drug resistance in cancer.


Cancers ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1631 ◽  
Author(s):  
Linah F. Al-Alem ◽  
Andrew T. Baker ◽  
Unnati M. Pandya ◽  
Eric L. Eisenhauer ◽  
Bo R. Rueda

Ovarian cancer cells evade the immune system as well as chemotherapeutic and/or biologic treatments through inherent or acquired mechanisms of survival and drug resistance. Depending on the cell type and the stimuli, this threshold can range from external forces such as blunt trauma to programmed processes such as apoptosis, autophagy, or necroptosis. This review focuses on apoptosis, which is one form of programmed cell death. It highlights the multiple signaling pathways that promote or inhibit apoptosis and reviews current clinical therapies that target apoptotic pathways in ovarian cancer.


2002 ◽  
Vol 277 (32) ◽  
pp. 29063-29068 ◽  
Author(s):  
Sophie Allart ◽  
Hélène Martin ◽  
Claire Détraves ◽  
Jérome Terrasson ◽  
Daniel Caput ◽  
...  

2019 ◽  
Author(s):  
P. Seyed Mir ◽  
A.-S. Berghoff ◽  
M. Preusser ◽  
G. Ricken ◽  
J. Riedl ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document