Brain Network Architecture Intricately Linked to Morphological Abnormalities in Major Psychiatric Disorders

2021 ◽  
Vol 89 (9) ◽  
pp. S229-S230
Author(s):  
Foivos Georgiadis ◽  
Sara Lariviere ◽  
Vaughan Carr ◽  
Stanley Catts ◽  
Melissa Green ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
pp. 111
Author(s):  
Farzad V. Farahani ◽  
Magdalena Fafrowicz ◽  
Waldemar Karwowski ◽  
Bartosz Bohaterewicz ◽  
Anna Maria Sobczak ◽  
...  

Significant differences exist in human brain functions affected by time of day and by people’s diurnal preferences (chronotypes) that are rarely considered in brain studies. In the current study, using network neuroscience and resting-state functional MRI (rs-fMRI) data, we examined the effect of both time of day and the individual’s chronotype on whole-brain network organization. In this regard, 62 participants (39 women; mean age: 23.97 ± 3.26 years; half morning- versus half evening-type) were scanned about 1 and 10 h after wake-up time for morning and evening sessions, respectively. We found evidence for a time-of-day effect on connectivity profiles but not for the effect of chronotype. Compared with the morning session, we found relatively higher small-worldness (an index that represents more efficient network organization) in the evening session, which suggests the dominance of sleep inertia over the circadian and homeostatic processes in the first hours after waking. Furthermore, local graph measures were changed, predominantly across the left hemisphere, in areas such as the precentral gyrus, putamen, inferior frontal gyrus (orbital part), inferior temporal gyrus, as well as the bilateral cerebellum. These findings show the variability of the functional neural network architecture during the day and improve our understanding of the role of time of day in resting-state functional networks.


2020 ◽  
pp. appi.ajp.2020.1
Author(s):  
Lauren A.M. Lebois ◽  
Meiling Li ◽  
Justin T. Baker ◽  
Jonathan D. Wolff ◽  
Danhong Wang ◽  
...  

2019 ◽  
Vol 45 (6) ◽  
pp. 1291-1299 ◽  
Author(s):  
Long-Biao Cui ◽  
Yongbin Wei ◽  
Yi-Bin Xi ◽  
Alessandra Griffa ◽  
Siemon C De Lange ◽  
...  

Abstract Emerging evidence indicates that a disruption in brain network organization may play an important role in the pathophysiology of schizophrenia. The neuroimaging fingerprint reflecting the pathophysiology of first-episode schizophrenia remains to be identified. Here, we aimed at characterizing the connectome organization of first-episode medication-naïve patients with schizophrenia. A cross-sectional structural and functional neuroimaging study using two independent samples (principal dataset including 42 medication-naïve, previously untreated patients and 48 healthy controls; replication dataset including 39 first-episode patients [10 untreated patients] and 66 healthy controls) was performed. Brain network architecture was assessed by means of white matter fiber integrity measures derived from diffusion-weighted imaging (DWI) and by means of structural-functional (SC-FC) coupling measured by combining DWI and resting-state functional magnetic resonance imaging. Connectome rich club organization was found to be significantly disrupted in medication-naïve patients as compared with healthy controls (P = .012, uncorrected), with rich club connection strength (P = .032, uncorrected) and SC-FC coupling (P < .001, corrected for false discovery rate) decreased in patients. Similar results were found in the replication dataset. Our findings suggest that a disruption of rich club organization and functional dynamics may reflect an early feature of schizophrenia pathophysiology. These findings add to our understanding of the neuropathological mechanisms of schizophrenia and provide new insights into the early stages of the disorder.


2019 ◽  
Vol 116 (17) ◽  
pp. 8582-8590 ◽  
Author(s):  
Meichen Yu ◽  
Kristin A. Linn ◽  
Russell T. Shinohara ◽  
Desmond J. Oathes ◽  
Philip A. Cook ◽  
...  

Patients with major depressive disorder (MDD) present with heterogeneous symptom profiles, while neurobiological mechanisms are still largely unknown. Brain network studies consistently report disruptions of resting-state networks (RSNs) in patients with MDD, including hypoconnectivity in the frontoparietal network (FPN), hyperconnectivity in the default mode network (DMN), and increased connection between the DMN and FPN. Using a large, multisite fMRI dataset (n= 189 patients with MDD,n= 39 controls), we investigated network connectivity differences within and between RSNs in patients with MDD and healthy controls. We found that MDD could be characterized by a network model with the following abnormalities relative to controls: (i) lower within-network connectivity in three task-positive RSNs [FPN, dorsal attention network (DAN), and cingulo-opercular network (CON)], (ii) higher within-network connectivity in two intrinsic networks [DMN and salience network (SAN)], and (iii) higher within-network connectivity in two sensory networks [sensorimotor network (SMN) and visual network (VIS)]. Furthermore, we found significant alterations in connectivity between a number of these networks. Among patients with MDD, a history of childhood trauma and current symptoms quantified by clinical assessments were associated with a multivariate pattern of seven different within- and between-network connectivities involving the DAN, FPN, CON, subcortical regions, ventral attention network (VAN), auditory network (AUD), VIS, and SMN. Overall, our study showed that traumatic childhood experiences and dimensional symptoms are linked to abnormal network architecture in MDD. Our results suggest that RSN connectivity may explain underlying neurobiological mechanisms of MDD symptoms and has the potential to serve as an effective diagnostic biomarker.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Shogo Kajimura ◽  
Naoki Masuda ◽  
Johnny King L. Lau ◽  
Kou Murayama

Abstract Research has shown that focused attention meditation not only improves our cognitive and motivational functioning (e.g., attention, mental health), it influences the way our brain networks [e.g., default mode network (DMN), fronto-parietal network (FPN), and sensory-motor network (SMN)] function and operate. However, surprisingly little attention has been paid to the possibility that meditation alters the architecture (composition) of these functional brain networks. Here, using a single-case experimental design with intensive longitudinal data, we examined the effect of mediation practice on intra-individual changes in the composition of whole-brain networks. The results showed that meditation (1) changed the community size (with a number of regions in the FPN being merged into the DMN after meditation) and (2) led to instability in the community allegiance of the regions in the FPN. These results suggest that, in addition to altering specific functional connectivity, meditation leads to reconfiguration of whole-brain network architecture. The reconfiguration of community architecture in the brain provides fruitful information about the neural mechanisms of meditation.


2019 ◽  
Vol 21 (1) ◽  
pp. 143 ◽  
Author(s):  
Mario Stampanoni Bassi ◽  
Ennio Iezzi ◽  
Luigi Pavone ◽  
Georgia Mandolesi ◽  
Alessandra Musella ◽  
...  

Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) characterized by demyelinating white matter lesions and neurodegeneration, with a variable clinical course. Brain network architecture provides efficient information processing and resilience to damage. The peculiar organization characterized by a low number of highly connected nodes (hubs) confers high resistance to random damage. Anti-homeostatic synaptic plasticity, in particular long-term potentiation (LTP), represents one of the main physiological mechanisms underlying clinical recovery after brain damage. Different types of synaptic plasticity, including both anti-homeostatic and homeostatic mechanisms (synaptic scaling), contribute to shape brain networks. In MS, altered synaptic functioning induced by inflammatory mediators may represent a further cause of brain network collapse in addition to demyelination and grey matter atrophy. We propose that impaired LTP expression and pathologically enhanced upscaling may contribute to disrupting brain network topology in MS, weakening resilience to damage and negatively influencing the disease course.


2015 ◽  
Vol 37 (2) ◽  
pp. 717-729 ◽  
Author(s):  
Lara M. Wierenga ◽  
Martijn P. van den Heuvel ◽  
Sarai van Dijk ◽  
Yvonne Rijks ◽  
Marcel A. de Reus ◽  
...  

2016 ◽  
Vol 44 ◽  
pp. 42-52 ◽  
Author(s):  
Courtney L. Gallen ◽  
Gary R. Turner ◽  
Areeba Adnan ◽  
Mark D'Esposito

Sign in / Sign up

Export Citation Format

Share Document