Recent process improvements for the ammonia fiber expansion (AFEX) process and resulting reductions in minimum ethanol selling price

2008 ◽  
Vol 99 (17) ◽  
pp. 8429-8435 ◽  
Author(s):  
Elizabeth (Newton) Sendich ◽  
Mark Laser ◽  
Seungdo Kim ◽  
Hasan Alizadeh ◽  
Lizbeth Laureano-Perez ◽  
...  
2021 ◽  
Vol 8 ◽  
Author(s):  
Jorge Aburto ◽  
Elías Martínez-Hernández

Sugarcane is a major crop produced in many tropical countries including Mexico and has been the basis of a well-established agroindustry. However, the variation in market prices and health concerns over the consumption of sugar are challenging the economics and sustainability of sugarcane growers and mills. This paper presents a techno-economic assessment of using existing production capacity of sugarcane in Mexico and the correspondent Mexican sugarcane mills for producing ethanol as gasoline oxygenate, in comparison to the export of excess sugar production. Using the most recent statistics, we found out that the bioethanol potential is of 849,260,499 L/year which can cover for 100% of the premium and magna gasoline demand in metropolitan area (MA) and 48% of premium gasoline in rest of the country areas (RoCAs) at 5.8% w/v blending (2.7% O2 w/v). This can be done by diverting the 20% sugar production excess to ethanol with the benefit of a higher gross netback of 308.3 USD/ton of sugarcane in comparison to 222.5 USD/ton of sugarcane when it is exported. Furthermore, a minimum ethanol-selling price (MESP) of 0.5211 USD/L was estimated, showing that ethanol might be competitive against methyl tert-butyl ether (0.50 USD/L FOB Gulf price) as gasoline oxygenate agent. Decarbonizing gasoline in Mexico through the use of ethanol might allow the abatement of 5,766.8 kg CO2/day when 20% sugar is used. Concerning the underconstruction Dos Bocas refinery in Tabasco State, southern Mexico, ethanol blend at 5.8% in gasolines might but also contribute to the abatement of 6.1% of CO2 emissions and the required sugarcane was estimated at 1 million tons per year. All these indicate that sugarcane has a great potential as a feedstock to produce first-generation ethanol as a gasoline oxygenate agent in Mexico.


Energies ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 4206 ◽  
Author(s):  
Sennai Mesfun ◽  
Leonidas Matsakas ◽  
Ulrika Rova ◽  
Paul Christakopoulos

This study investigates technoeconomic performance of standalone biorefinery concepts that utilize hybrid organic solvent and steam explosion pretreatment technique. The assessments were made based on a mathematical process model developed in UniSim Design software using inhouse experimental data. The work was motivated by successful experimental applications of the hybrid pretreatment technique on lignocellulosic feedstocks that demonstrated high fractionation efficiency into a cellulose-rich, a hemicellulose-rich and lignin streams. For the biorefinery concepts studied here, the targeted final products were ethanol, organosolv lignin and hemicellulose syrup. Minimum ethanol selling price (MESP) and Internal rate of return (IRR) were evaluated as economic indicators of the investigated biorefinery concepts. Depending on the configuration, and allocating all costs to ethanol, MESP in the range 0.53–0.95 €/L were required for the biorefinery concepts to break even. Under the assumed ethanol reference price of 0.55 €/L, the corresponding IRR were found to be in the range −1.75–10.7%. Hemicellulose degradation and high steam demand identified as major sources of inefficiencies for the process and economic performance, respectively. Sensitivity of MESP and IRR towards the most influential technical, economic and market parameters performed.


2021 ◽  
Author(s):  
Zhaoyang Yuan ◽  
Bryan D. Bals ◽  
Eric L. Hegg ◽  
David B. Hodge

Abstract Background A lignocellulose-to-biofuel biorefinery process that enables multiple product streams is recognized as a promising strategy to improve the economics of this biorefinery and to accelerate technology commercialization. We recently identified an innovative pretreatment technology that enables of the production of sugars at high yields while simultaneously generating a high-quality lignin stream that has been demonstrated as both a promising renewable polyol replacement for polyurethane applications and is highly susceptible to depolymerization into monomers. This technology comprises a two-stage pretreatment approach that includes an alkaline pre-extraction followed by a metal-catalyzed alkaline-oxidative pretreatment. Our recent work demonstrated that H2O2 and O2 act synergistically as co-oxidants during the alkaline-oxidative pretreatment and could significantly reduce the pretreatment chemical input while maintaining high sugar yields, high lignin yields, and improvements in lignin usage. Results This study considers the economic impact of these advances and provides strategies that could lead to additional economic improvements for future commercialization. The results of the technoeconomic analysis (TEA) demonstrated that adding O2 as a co-oxidant at 50 psig for the alkaline-oxidative pretreatment and reducing the raw material input reduced the minimum fuel selling price from $1.08/L to $0.85/L, assuming recoverable lignin is used as a polyol replacement. If additional lignin can be recovered and sold as more valuable monomers, the minimum fuel selling price (MFSP) can be further reduced to $0.73/L. Conclusions The present work demonstrated that high sugar and lignin yields combined with low raw material inputs and increasing the value of lignin could greatly increase the economic viability of a poplar-based biorefinery. Continued research on integrating sugar production with lignin valorization is thus warranted to confirm this economic potential as the technology matures.


Energies ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 436 ◽  
Author(s):  
Noor Intan Shafinas Muhammad ◽  
Kurt A. Rosentrater

Food waste (FW) is one of the most critical problems in the world. Most FW will be sent to landfills, generally accompanying some significant disadvantages to the surrounding environment. Fermentation is considered as another disposal method to deal with FW. In this study, using a techno-economic analysis (TEA) method, an evaluation of the economic impact of three different scenarios of FW fermentation is carried out. A SuperPro Designer V9.0 simulation was used to model a commercial scale processing plant for each scenario, namely, a FW fermentation process producing hydrolysis enzymes and featuring a 2-step distillation system, a FW fermentation process without enzymes, using a 2-step distillation system, and a FW fermentation process without enzymes, using a 1-step distillation system. Discounted cash flow analysis is used to estimate the minimum ethanol selling price (MESP), where the lowest MESP result of $2.41/gal ($0.64/L) of ethanol is found for the second aforementioned scenario, showing that, even without enzymes in FW fermentation, the product cost can be competitive when compared to the other scenarios considered in this study. This project thus reflects a significant positive economic impact while minimizing the environmental footprint of a commercial production facility.


2013 ◽  
Vol 140 ◽  
pp. 426-430 ◽  
Author(s):  
Ling Tao ◽  
David W. Templeton ◽  
David Humbird ◽  
Andy Aden

Processes ◽  
2019 ◽  
Vol 7 (10) ◽  
pp. 642 ◽  
Author(s):  
Cheng ◽  
Wang ◽  
Dien ◽  
Slininger ◽  
Singh

A new process for conversion of sugarcane bagasse to ethanol was analyzed for production costs and energy consumption using experimental results. The process includes a sequential three-stage deacetylation, hot water, and disk-refining pretreatment and a commercial glucose-xylose fermenting S. cerevisiae strain. The simultaneous saccharification and co-fermentation (SScF) step used was investigated at two solids loadings: 10% and 16% w/w. Additionally, a sensitivity analysis was conducted for the major operating parameters. The minimum ethanol selling price (MESP) varied between $4.91and $4.52/gal ethanol. The higher SScF solids loading (16%) reduced the total operating, utilities, and production costs by 9.5%, 15.6%, and 5.6%, respectively. Other important factors in determining selling price were costs for fermentation medium and enzymes (e.g. cellulases). Hence, these findings support operating at high solids and producing enzymes onsite as strategies to minimize MESP.


Fermentation ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 229
Author(s):  
Teeraya Jarunglumlert ◽  
Chattip Prommuak

Co-production is a process based on the biorefinery concept that maximizes the benefit of biomass by reusing residue from the production of one product to produce others. In this regard, biogas is one of the most researched second products for the production of ethanol from cellulosic biomass. However, operating this scheme requires additional investment in biogas processing equipment. This review compiles data from research studies on the co-production of bioethanol and biogas from lignocellulosic biomass to determine which is more worthwhile: leaving the residue or investing more to benefit from the second product. According to previous research, ethanol stillage can be converted to biogas via anaerobic digestion, increasing energy output by 2–3 fold. Techno-economic studies demonstrated that the co-production process reduces the minimum ethanol selling price to a level close to the market price of ethanol, implying the possibility of industrializing cellulosic ethanol production through this scheme.


Sign in / Sign up

Export Citation Format

Share Document