Reinforcement of carboxyl groups in the surface of Corynebacterium glutamicum biomass for effective removal of basic dyes

2009 ◽  
Vol 100 (24) ◽  
pp. 6301-6306 ◽  
Author(s):  
Sung Wook Won ◽  
K. Vijayaraghavan ◽  
Juan Mao ◽  
Sok Kim ◽  
Yeoung-Sang Yun
Author(s):  
J. R. Rowley

Recent observations indicate that sporopollenin cannot any longer be considered as the only major component of the exine. Filaments in great numbers are exposed from exines of Lycopodium spores heated to high temperatures and sporopollenin partially dissolved. The filaments have closely spaced anionic sites whereas sporopollenin is composed only of C, H, and O and is without carboxyl groups to explain the basophilia typical of exines. The exposed filaments of Lycopodium spore exines are similar in their resistance to the organic base 2-aminoethanol, reaction to basic dyes, and in morphology to lipopolysaccharide extracted from exines of Epilgbium pollen (Rowley, abst. & oral presentation for Scand. Soc. of E.M., Umea 1973).To isolate lipopolysaccharide (LPS), exines were dissolved in 2-aminoethanol at 130-140°C for 18 hrs. Following dialysis the residue was extracted with 45% aqueous phenol at 65-68°C. The large aggregates of LPS in water were separated from other non-dialysiable substances by ultracentrifugation.


2008 ◽  
Vol 76 (2) ◽  
pp. 519-524 ◽  
Author(s):  
Renmin Gong ◽  
Youbin Jin ◽  
Jin Sun ◽  
Keding Zhong

2014 ◽  
Vol 86 (11) ◽  
pp. 1755-1769 ◽  
Author(s):  
Sylwia Ronka ◽  
Małgorzata Kujawska ◽  
Honorata Juśkiewicz

Abstract The objective of the study was to investigate sorption of simazine, atrazine, propazine and terbuthylazine on specific polymeric adsorbent and thereby evaluate the possibility of triazine-based herbicide removal from the aqueous solution. In order to obtain polymer adsorbent for triazines removal, the poly(divinylbenzene) was synthesized in radical polymerization using bead polymerization, and modified with maleic anhydride in Diels–Alder reaction with subsequent base hydrolysis. The porous material containing carboxyl groups was obtained. Experiments have been performed in single and multi-component mixtures of herbicide in the ppm concentration range. Introduction of carboxyl groups into polymer structure resulted in obtaining specific interactions, such as hydrogen bonds between modified poly(divinylbenzene) and triazines, therefore intensification of adsorption was observed. Calculated distribution coefficients of triazines (K = 2600–35 100) testify to their effective removal from aqueous solutions on the studied adsorbent. Selective sorption of triazines is observed and explained in relation to the binding mechanism which involve hydrophobic interactions and hydrogen bonding. The effect of the adsorbate structure on the ability to form specific interactions with the tested adsorbent was investigated. The kinetic of sorption and the parameters of Langmuir and Freundlich isotherms for the studied systems were determined.


Author(s):  
D. James Morré ◽  
Charles E. Bracker ◽  
William J. VanDerWoude

Calcium ions in the concentration range 5-100 mM inhibit auxin-induced cell elongation and wall extensibility of plant stems. Inhibition of wall extensibility requires that the tissue be living; growth inhibition cannot be explained on the basis of cross-linking of carboxyl groups of cell wall uronides by calcium ions. In this study, ultrastructural evidence was sought for an interaction of calcium ions with some component other than the wall at the cell surface of soybean (Glycine max (L.) Merr.) hypocotyls.


2019 ◽  
Vol 476 (21) ◽  
pp. 3141-3159 ◽  
Author(s):  
Meiru Si ◽  
Can Chen ◽  
Zengfan Wei ◽  
Zhijin Gong ◽  
GuiZhi Li ◽  
...  

Abstract MarR (multiple antibiotic resistance regulator) proteins are a family of transcriptional regulators that is prevalent in Corynebacterium glutamicum. Understanding the physiological and biochemical function of MarR homologs in C. glutamicum has focused on cysteine oxidation-based redox-sensing and substrate metabolism-involving regulators. In this study, we characterized the stress-related ligand-binding functions of the C. glutamicum MarR-type regulator CarR (C. glutamicum antibiotic-responding regulator). We demonstrate that CarR negatively regulates the expression of the carR (ncgl2886)–uspA (ncgl2887) operon and the adjacent, oppositely oriented gene ncgl2885, encoding the hypothetical deacylase DecE. We also show that CarR directly activates transcription of the ncgl2882–ncgl2884 operon, encoding the peptidoglycan synthesis operon (PSO) located upstream of carR in the opposite orientation. The addition of stress-associated ligands such as penicillin and streptomycin induced carR, uspA, decE, and PSO expression in vivo, as well as attenuated binding of CarR to operator DNA in vitro. Importantly, stress response-induced up-regulation of carR, uspA, and PSO gene expression correlated with cell resistance to β-lactam antibiotics and aromatic compounds. Six highly conserved residues in CarR were found to strongly influence its ligand binding and transcriptional regulatory properties. Collectively, the results indicate that the ligand binding of CarR induces its dissociation from the carR–uspA promoter to derepress carR and uspA transcription. Ligand-free CarR also activates PSO expression, which in turn contributes to C. glutamicum stress resistance. The outcomes indicate that the stress response mechanism of CarR in C. glutamicum occurs via ligand-induced conformational changes to the protein, not via cysteine oxidation-based thiol modifications.


2019 ◽  
Vol 35 (6) ◽  
pp. 21-29
Author(s):  
T.E. Leonova ◽  
T.E. Shustikova ◽  
T.V. Gerasimova ◽  
Т.А. Ivankova ◽  
K.V. Sidorenko Sidorenko ◽  
...  

Thepsefdh_D221Q gene coding for a mutant formate dehydrogenase (PseFDG_D221Q) from Pseudomonas, which catalyzes the formate oxidation with the simultaneous formation of NADPH, has been expressed in the cells of lysine-producing Corynebacterium glutamicum strains. The psefdh_D221Q gene was introduced into С. glutamicum strains as part of an autonomous plasmid or was integrated into the chromosome with simultaneous inactivation of host formate dehydrogenase genes. It was shown that the С. glutamicum strains with NADP+ -dependent formate dehydrogenase have an increased level of L-lysine synthesis in the presence of formate, if their own formate dehydrogenase is inactivated. L-lysine, formate dehydrogenase, NADPH, Corynebacterium glutamicum The work was carried out using the equipment of the Multipurpose Scientific This work was carried out on the equipment of the Multipurpose Scientific Installation of «All-Russian Collection of Industrial Microorganisms», National Bio-Resource Center, NRC «Kurchatov Institute»- GosNIIgenetika. This work was financially supported by the Ministry of Education and Science of Russia (Unique Project Identifier - RFMEFI61017X0011).


1996 ◽  
Vol 33 (8) ◽  
pp. 71-77
Author(s):  
I. M.-C. Lo ◽  
H. M. Liljestrand ◽  
J. Khim ◽  
Y. Shimizu

Simple land disposal systems for hazardous and mixed wastes contain heavy metal cationic species through precipitation and ion exchange mechanisms but typically fail by releasing soluble organic and inorganic anionic species. To enhance the removal of anions from leachate, clays are modified with coatings of iron or aluminium cations to bridge between the anionic surface and the anionic pollutants. A competitive surface ligand exchange model indicates that surface coatings of 10 meq cation/gm montmorillonite under typical leachate conditions increase the inorganic anion sorption capacity by at least a factor of 6 and increase the intrinsic surface exchange constants by more than a factor of 100. Similarly, metal hydroxide coatings on montmorillonite increase the organic anion sorption capacity by a factor of 9 and increase the intrinsic surface exchange constants by a factor of 20. For historical concentrations of non-metal anions in US hazardous and mixed waste leachate, sorption onto natural clay liner materials is dominated by arsenate sorption. With cation coatings, anion exchange provides an effective removal for arsenate, selenate, phenols, cresols, and phthalates. Engineering applications are presented for the use of modified clays as in situ barriers to leachate transport of anionic pollutants as well as for above ground treatment of recovered leachate.


Sign in / Sign up

Export Citation Format

Share Document