Long-chain fatty acids inhibition and adaptation process in anaerobic thermophilic digestion: Batch tests, microbial community structure and mathematical modelling

2010 ◽  
Vol 101 (7) ◽  
pp. 2243-2251 ◽  
Author(s):  
J. Palatsi ◽  
J. Illa ◽  
F.X. Prenafeta-Boldú ◽  
M. Laureni ◽  
B. Fernandez ◽  
...  
Processes ◽  
2019 ◽  
Vol 7 (12) ◽  
pp. 879 ◽  
Author(s):  
Xiaolan Xiao ◽  
Wansheng Shi ◽  
Wenquan Ruan

The performance and microbial community structure for treating lipids-rich kitchen waste slurry in mesophilic Anaerobic Membrane Bioreactor (m-AnMBR) and thermophilic AnMBR (t-AnMBR) were compared in this study. Higher Organic Loading Rate (OLR) of 12 kg-COD/(m3·d), better Chemical Oxygen Demand (COD) removal efficiency over 98%, stronger stability with Volatile Fatty Acids (VFAs)/alkalinity below 0.04, higher flux with 18 L/(m2·h) and lower Long Chain Fatty Acids (LCFAs) concentration of 550 mg/L were obtained in the m-AnMBR. Directly increasing temperature from 39 to 55 °C resulted in a collapse of the t-AnMBR. Acclimation via gradually increasing temperature made the t-AnMBR run successfully with lower OLR and COD removal efficiency of 7.5 kg-COD/(m3·d) and 96%. An obvious discrepancy of microbial community structure was presented between the m-AnMBR and t-AnMBR via the 16S rRNA gene sequence analysis. The Methanomethylovorans and Methanoculleus were dominant in the t-AnMBR instead of Methanobacterium and Methanothrix in the m-AnMBR.


2019 ◽  
Vol 149 (5) ◽  
pp. 856-869 ◽  
Author(s):  
Ling Xiao ◽  
Phillip A Engen ◽  
Thea Leusink-Muis ◽  
Ingrid van Ark ◽  
Bernd Stahl ◽  
...  

ABSTRACT Background A critical role for host-microbe interactions and establishment of vaccine responses has been postulated. Human milk oligosaccharides, of which 2′-fucosyllactose (2′FL) is the most prevalent, are known to alter host-associated microbial communities and play a critical role in the immunologic development of breastfed infants. Objectives Dietary supplementation with a combination of 2′FL and prebiotic short-chain (sc) galacto-oligosaccharides (GOS) and long-chain (lc) fructo-oligosaccharides (FOS) was employed to examine human milk oligosaccharide effects on immune responsiveness, within a murine influenza vaccination model. Methods Female mice (6 wk old, C57Bl/6JOlaHsd) were fed either control diet (CON) or scGOS/lcFOS/2′FL-containing diet (GF2F) for 45 d. After starting dietary intervention (day 14), mice received a primary influenza vaccination (day 0) followed by a booster vaccination (day 21), after which ear challenges were conducted to measure vaccine-specific delayed type hypersensitivity (DTH). Serum immunoglobulin (Ig) levels, fecal and cecal microbial community structure, short-chain fatty acids, host intestinal gene expression and cellular responses in the mesenteric lymph nodes (MLNs) were also measured. Results Relative to CON, mice fed the GF2F diet had increased influenza vaccine–specific DTH responses (79.3%; P < 0.01), higher levels of both IgG1 (3.2-fold; P < 0.05) and IgG2a (1.2-fold; P < 0.05) in serum, and greater percentages of activated B cells (0.3%; P < 0.05), regulatory T cells (1.64%; P < 0.05), and T-helper 1 cells (2.2%; P < 0.05) in their MLNs. GF2F-fed mice had elevated cecal butyric (P < 0.05) and propionic (P < 0.05) acid levels relative to CON, which correlated to DTH responses (R2 = 0.22; P = 0.05 and R2 = 0.39; P < 0.01, respectively). Specific fecal microbial taxa altered in GF2F diet fed mice relative to CON were significantly correlated with the DTH response and IgG2a level increases. Conclusions Dietary GF2F improved influenza vaccine–specific T-helper 1 responses and B cell activation in MLNs and enhanced systemic IgG1 and IgG2a concentrations in mice. These immunologic changes are correlated with microbial community structure and metabolites.


mSphere ◽  
2017 ◽  
Vol 2 (3) ◽  
Author(s):  
Zehra Esra Ilhan ◽  
Andrew K. Marcus ◽  
Dae-Wook Kang ◽  
Bruce E. Rittmann ◽  
Rosa Krajmalnik-Brown

ABSTRACT The human gut is a dynamic environment in which microorganisms consistently interact with the host via their metabolic products. Some of the most important microbial metabolic products are fermentation products such as short-chain fatty acids. Production of these fermentation products and the prevalence of fermenting microbiota depend on pH, alkalinity, and available dietary sugars, but details about their metabolic interactions are unknown. Here, we show that, for in vitro conditions, pH was the strongest driver of microbial community structure and function and microbial and metabolic interactions among pH-sensitive fermentative species. The balance between bicarbonate alkalinity and formation of fatty acids by fermentation determined the pH, which controlled microbial community structure. Our results underscore the influence of pH balance on microbial function in diverse microbial ecosystems such as the human gut. pH and fermentable substrates impose selective pressures on gut microbial communities and their metabolisms. We evaluated the relative contributions of pH, alkalinity, and substrate on microbial community structure, metabolism, and functional interactions using triplicate batch cultures started from fecal slurry and incubated with an initial pH of 6.0, 6.5, or 6.9 and 10 mM glucose, fructose, or cellobiose as the carbon substrate. We analyzed 16S rRNA gene sequences and fermentation products. Microbial diversity was driven by both pH and substrate type. Due to insufficient alkalinity, a drop in pH from 6.0 to ~4.5 clustered pH 6.0 cultures together and distant from pH 6.5 and 6.9 cultures, which experienced only small pH drops. Cellobiose yielded more acidity than alkalinity due to the amount of fermentable carbon, which moved cellobiose pH 6.5 cultures away from other pH 6.5 cultures. The impact of pH on microbial community structure was reflected by fermentative metabolism. Lactate accumulation occurred in pH 6.0 cultures, whereas propionate and acetate accumulations were observed in pH 6.5 and 6.9 cultures and independently from the type of substrate provided. Finally, pH had an impact on the interactions between lactate-producing and -consuming communities. Lactate-producing Streptococcus dominated pH 6.0 cultures, and acetate- and propionate-producing Veillonella, Bacteroides, and Escherichia dominated the cultures started at pH 6.5 and 6.9. Acid inhibition on lactate-consuming species led to lactate accumulation. Our results provide insights into pH-derived changes in fermenting microbiota and metabolisms in the human gut. IMPORTANCE The human gut is a dynamic environment in which microorganisms consistently interact with the host via their metabolic products. Some of the most important microbial metabolic products are fermentation products such as short-chain fatty acids. Production of these fermentation products and the prevalence of fermenting microbiota depend on pH, alkalinity, and available dietary sugars, but details about their metabolic interactions are unknown. Here, we show that, for in vitro conditions, pH was the strongest driver of microbial community structure and function and microbial and metabolic interactions among pH-sensitive fermentative species. The balance between bicarbonate alkalinity and formation of fatty acids by fermentation determined the pH, which controlled microbial community structure. Our results underscore the influence of pH balance on microbial function in diverse microbial ecosystems such as the human gut.


Sign in / Sign up

Export Citation Format

Share Document