An investigation of ultrasound effect on microalgal cell integrity and lipid extraction efficiency

2014 ◽  
Vol 152 ◽  
pp. 407-413 ◽  
Author(s):  
Ulker D. Keris-Sen ◽  
Unal Sen ◽  
Gulfem Soydemir ◽  
Mirat D. Gurol
Minerals ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 351
Author(s):  
Anna Knaislová ◽  
Hong Vu ◽  
Petr Dvořák

The influence of ultrasound and microwaves on extraction of copper, nickel, and cobalt from manganese deep-sea nodules by reductive ammoniacal leaching in the presence of ammonium thiosulfate as a reducing agent was studied. The ultrasonic ammoniacal leaching provides higher metals extraction, while the effect of microwaves on the metals extraction under the studied leaching conditions is insignificant. In general, increasing leaching temperature increases significantly extraction of the metals of interest. At high temperatures, extraction efficiencies of copper, nickel, and cobalt decrease over longer leaching duration as a result of decomposition of the metals amino-complexes and reverse precipitation of metals. However, during the ultrasonic leaching at a temperature of 85 °C, the extraction of nickel remains almost unchanged over longer leaching durations and does not follow the decreasing course, observed in the extraction of copper and cobalt. The finding suggests that nickel can be selectively extracted from the nodules by the ultrasonic leaching. The maximal extraction efficiency of copper, nickel, and cobalt was 83%, 71%, and 32%, respectively, when the reductive ultrasonic ammoniacal leaching was carried out at 85 °C for 90 min. In the presence of microwaves, the maximal extraction efficiency of copper, nickel, and cobalt was 67%, 48%, and 8%, respectively, when the reductive ultrasonic ammoniacal leaching was carried out at the output power of 60 W for 210 min.


PLoS ONE ◽  
2017 ◽  
Vol 12 (1) ◽  
pp. e0170611 ◽  
Author(s):  
Kristin Forfang ◽  
Boris Zimmermann ◽  
Gergely Kosa ◽  
Achim Kohler ◽  
Volha Shapaval

2017 ◽  
Vol 71 (2) ◽  
pp. 167-174 ◽  
Author(s):  
Myung-Gyun Kim ◽  
Hyun-Wook Hwang ◽  
Antony Nzioka ◽  
Young-Ju Kim

In order to secure more effective lipid extraction method, this research investigated new lipid extraction method using laser with absorbent and sought its optimum operation control. In addition, this study compared lipid extraction efficiency and FAME conversion rate between laser extraction method at optimum condition and existing extraction method. Results from experiments for optimizing lipid extraction method using laser showed that the maximum extraction efficiency (81.8%) was attained when using laser with an output capacity of 75Wh/L. Extraction efficiency increased up to 90.8% when microwave treatment as pretreatment process was conducted. Addition of absorbents during lipid extraction process with laser showed higher extraction efficiency than laser and chemical method. It was also found that laser extraction method with absorbent had higher total fatty acid content (853.7 mg/g oil) in extracted lipid than chemical extraction method (825.4 mg/g oil). Furthermore, it had the highest FAME conversion rate (94.2%).


Author(s):  
Magdalena Rokicka ◽  
Marcin Zieliński ◽  
Magda Dudek ◽  
Marcin Dębowski

Abstract The extraction of lipids from microalgae cells of Botryococcus braunii and Chlorella vulgaris after ultrasonic and microwave pretreatment was evaluated. Cell disruption increased the lipid extraction efficiency, and microwave pretreatment was more effective compared with ultrasonic pretreatment. The maximum lipid yield from B. braunii was 56.42% using microwave radiation and 39.61% for ultrasonication, while from C. vulgaris, it was respectively 41.31% and 35.28%. The fatty acid composition in the lipid extracts was also analyzed. The methane yield from the residual extracted biomass pretreated by microwaves ranged from 148 to 185 NmL CH4/g VS for C. vulgaris and from 128 to 142 NmL CH4/g VS for B. braunii. In the case of ultrasonic pretreatment, the methane production was between 168 and 208 NmL CH4/g VS for C. vulgaris, while for B. braunii ranging from 150 to 174 NmL CH4/g VS. Anaerobic digestion showed that lipid-extracted biomass presented lower methane yield than non-lipid-extracted feedstock, and higher amount of lipid obtained in the extraction contributed less methane production. Anyway, anaerobic digestion of the residual extracted biomass can be a suitable method to increase economic viability of energy recovery from microalgae.


2017 ◽  
Vol 10 (27) ◽  
pp. 1319-1327
Author(s):  
Angel Dario Gonzalez-Delgado ◽  
Andres Fernando Barajas-Solano ◽  
Yeimmy Yolima Peralta-Ruiz

Microalgae has recently been highlighted as source of valuable products including biofuel. The production process of biofuels from microalgae involves mass cultivation, harvesting, deep dewatering, lipid extraction and biofuel conversion. In this work, lipids from microalgae Navicula sp. were obtained using multifunctional process that consists of acid hydrolysis or cellular disruption, oil extraction and in situ transesterification. The effect of alcohol added to produce ethyl and methyl esters on lipid extraction efficiency was evaluated using methanol and ethanol in order to determine the most suitable route for obtaining the high values of lipids and total reducing sugar. The highest lipid extraction efficiency and total reducing sugar (7.72 % and 2.63 mg/ml, respectively) was obtained for methanol. The low lipid extraction efficiency of multifuctional process is due to transesterification of lipids that gradually released into the system. The formation of alkyl esters was confirmed by FTIR with an increase in carbonyl peak as the reaction progressed, thus muntifuctional process reduce cost of alkyl esters production by eliminating the step of lipid extraction by solvent.


2021 ◽  
pp. 130517
Author(s):  
Yongwu Wu ◽  
Wenhao Xiang ◽  
Linyang Li ◽  
Huimin Liu ◽  
Nianbing Zhong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document