Characteristics and potential values of bio-oil, syngas and biochar derived from Salsola collina Pall. in a fixed bed slow pyrolysis system

2016 ◽  
Vol 220 ◽  
pp. 378-383 ◽  
Author(s):  
Yan Yue ◽  
Qimei Lin ◽  
Muhammad Irfan ◽  
Qun Chen ◽  
Xiaorong Zhao
Keyword(s):  
2017 ◽  
Vol 5 (4) ◽  
pp. 4051-4063 ◽  
Author(s):  
Kotaiah Naik Dhanavath ◽  
Kalpit Shah ◽  
Satyavathi Bankupalli ◽  
Suresh K. Bhargava ◽  
Rajarathinam Parthasarathy

2021 ◽  
Vol 56 (3) ◽  
pp. 394-404
Author(s):  
C. M. Góngora ◽  
C. Rivera ◽  
A. López ◽  
F. Mesa ◽  
A. J. Aristizábal

The management of vast amounts of urban solid waste is daily. The population growth must create diligent politics that mitigate the impacts created by the increased demand for energy and basic needs. This research aimed to analyze biocarbon and bio-oil production performance through the combination of gasification and slow pyrolysis using a cylindrical reactor with a fixed bed. The residues were collected from the market square of “La Satélite” located in Florencia-Caquetá, and the organic fraction was separated without any previous treatment. For this, an experimental design was randomly created with two factors: 6 work temperatures for the reactor (150, 250, 350, 450, 550, 600°C) and three samples of residues (5, 10 and 15 kg), for a total of 18 treatments and three repetitions. The results were analyzed through analysis of variance (ANOVA), obtaining the highest biomass production with 150°C and 15kg of residue and the highest amount of bio-oil with the combination of 5kg of residue with 150°C. The results demonstrate that combining these two thermochemical processes (gasification and slow pyrolysis) is an efficient and sustainable way to treat solid residues that should be implemented on a large scale.


2018 ◽  
Vol 69 (3) ◽  
pp. 553-556 ◽  
Author(s):  
Doinita Roxana Cioroiu ◽  
Oana Cristina Parvulescu ◽  
Tanase Dobre ◽  
Cristian Raducanu ◽  
Claudia Irina Koncsag ◽  
...  

Slow pyrolysis of algal biomass of Cystoseira barbata was performed in a fixed bed reactor using carbon dioxide as a sweeping gas and a reactant in the process. Pyrolysis products consisted of a biochar, a bio-oil, and pyrolytic gases. According to a 23 factorial experiment, 8 tests were conducted for 1 hr at two levels of each process factor, i.e., specific heat flow rate (7540, 9215 W/m3), carbon dioxide superficial velocity (1.3, 2.6 cm/s), and bulk density of fixed bed biomass (221, 332 kg/m3). Correlations between these factors and final process responses in terms of mean bed temperature (461-663 oC), biochar yield (15.2-26.7%), bio-oil yield (29.9-34.8%), and BET surface area of biochar (45.17-91.12 m2/g) were established.


Processes ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 37
Author(s):  
Suzana Ioana Calcan ◽  
Oana Cristina Pârvulescu ◽  
Violeta Alexandra Ion ◽  
Cristian Eugen Răducanu ◽  
Liliana Bădulescu ◽  
...  

The paper aimed at studying the slow pyrolysis of vine pruning waste in a fixed bed reactor and characterizing the pyrolysis products. Pyrolysis experiments were conducted for 60 min, using CO2 as a carrier gas and oxidizing agent. The distribution of biochar and bio-oil was dependent on variations in heat flux (4244–5777 W/m2), CO2 superficial velocity (0.004–0.008 m/s), and mean size of vegetal material (0.007–0.011 m). Relationships among these factors and process performances in terms of yields of biochar (0.286–0.328) and bio-oil (0.260–0.350), expressed as ratio between the final mass of pyrolysis product and initial mass of vegetal material, and final value of fixed bed temperature (401.1–486.5 °C) were established using a 23 factorial design. Proximate and ultimate analyses, FT-IR and SEM analyses, measurements of bulk density (0.112 ± 0.001 g/cm3), electrical conductivity (0.55 ± 0.03 dS/m), pH (10.35 ± 0.06), and water holding capacity (58.99 ± 14.51%) were performed for biochar. Water content (33.2 ± 1.27%), density (1.027 ± 0.014 g/cm3), pH (3.34 ± 0.02), refractive index (1.3553 ± 0.0027), and iodine value (87.98 ± 4.38 g I2/100 g bio-oil) were measured for bio-oil. Moreover, chemical composition of bio-oil was evaluated using GC-MS analysis, with 27 organic compounds being identified.


2020 ◽  
Vol 849 ◽  
pp. 47-52
Author(s):  
Siti Jamilatun ◽  
Aster Rahayu ◽  
Yano Surya Pradana ◽  
Budhijanto ◽  
Rochmadi ◽  
...  

Nowadays, energy consumption has increased as a population increases with socio-economic developments and improved living standards. Therefore, it is necessary to find a replacement for fossil energy with renewable energy sources, and the potential to develop is biofuels. Bio-oil, water phase, gas, and char products will be produced by utilizing Spirulina platensis (SPR) microalgae extraction residue as pyrolysis raw material. The purpose of this study is to characterize pyrolysis products and bio-oil analysis with GC-MS. Quality fuel is good if O/C is low, H/C is high, HHV is high, and oxygenate compounds are low, but aliphatic and aromatic are high. Pyrolysis was carried out at a temperature of 300-600°C with a feed of 50 grams in atmospheric conditions with a heating rate of 5-35°C/min, the equipment used was a fixed-bed reactor. The higher the pyrolysis temperature, the higher the bio-oil yield will be to an optimum temperature, then lower. The optimum temperature of pyrolysis is 550°C with a bio-oil yield of 23.99 wt%. The higher the pyrolysis temperature, the higher the H/C, the lower O/C. The optimum condition was reached at a temperature of 500°C with the values of H/C, and O/C is 1.17 and 0.47. With an increase in temperature of 300-600°C, HHV increased from 11.64 MJ/kg to 20.63 MJ/kg, the oxygenate compound decreased from 85.26 to 37.55 wt%. Aliphatics and aromatics increased, respectively, from 5.76 to 36.72 wt% and 1.67 to 6.67 wt%.


Processes ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 23
Author(s):  
Wenli Wang ◽  
Yichen Liu ◽  
Yue Wang ◽  
Longfei Liu ◽  
Changwei Hu

The thermal degradation of lignin for value-added fuels and chemicals is important for environment improvement and sustainable development. The impact of pretreatment and catalysis of Ni(NO3)2 on the pyrolysis behavior of organsolv lignin were studied in the present work. Samples were pyrolyzed at 500 ∘C with an upward fixed bed, and the characteristics of bio-oil were determined. After pretreatment by Ni(NO3)2, the yield of monophenols increased from 23.3 wt.% to 30.2 wt.% in “Ni-washed” and decreased slightly from 23.3 wt.% to 20.3 wt.% in “Ni-unwashed”. Meanwhile, the selective formation of vinyl-monophenols was promoted in “Ni-unwashed”, which indicated that the existence of nickel species promoted the dehydration of C-OH and breakage of C-C in pyrolysis. In comparison with “Water”, HHV of bio-oil derived from “Ni-unwashed” slightly increased from 27.94 mJ/kg to 28.46 mJ/kg, suggesting that the lowering of oxygen content in bio-oil is associated with improved quality. Furthermore, the content of H2 in gas products dramatically increased from 2.0% to 7.6% and 17.1%, respectively.


2010 ◽  
Vol 33 (12) ◽  
pp. 2021-2028 ◽  
Author(s):  
P. Lan ◽  
Q. Xu ◽  
M. Zhou ◽  
L. Lan ◽  
S. Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document