scholarly journals Valorization of Vine Prunings by Slow Pyrolysis in a Fixed-Bed Reactor

Processes ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 37
Author(s):  
Suzana Ioana Calcan ◽  
Oana Cristina Pârvulescu ◽  
Violeta Alexandra Ion ◽  
Cristian Eugen Răducanu ◽  
Liliana Bădulescu ◽  
...  

The paper aimed at studying the slow pyrolysis of vine pruning waste in a fixed bed reactor and characterizing the pyrolysis products. Pyrolysis experiments were conducted for 60 min, using CO2 as a carrier gas and oxidizing agent. The distribution of biochar and bio-oil was dependent on variations in heat flux (4244–5777 W/m2), CO2 superficial velocity (0.004–0.008 m/s), and mean size of vegetal material (0.007–0.011 m). Relationships among these factors and process performances in terms of yields of biochar (0.286–0.328) and bio-oil (0.260–0.350), expressed as ratio between the final mass of pyrolysis product and initial mass of vegetal material, and final value of fixed bed temperature (401.1–486.5 °C) were established using a 23 factorial design. Proximate and ultimate analyses, FT-IR and SEM analyses, measurements of bulk density (0.112 ± 0.001 g/cm3), electrical conductivity (0.55 ± 0.03 dS/m), pH (10.35 ± 0.06), and water holding capacity (58.99 ± 14.51%) were performed for biochar. Water content (33.2 ± 1.27%), density (1.027 ± 0.014 g/cm3), pH (3.34 ± 0.02), refractive index (1.3553 ± 0.0027), and iodine value (87.98 ± 4.38 g I2/100 g bio-oil) were measured for bio-oil. Moreover, chemical composition of bio-oil was evaluated using GC-MS analysis, with 27 organic compounds being identified.

2018 ◽  
Vol 69 (3) ◽  
pp. 553-556 ◽  
Author(s):  
Doinita Roxana Cioroiu ◽  
Oana Cristina Parvulescu ◽  
Tanase Dobre ◽  
Cristian Raducanu ◽  
Claudia Irina Koncsag ◽  
...  

Slow pyrolysis of algal biomass of Cystoseira barbata was performed in a fixed bed reactor using carbon dioxide as a sweeping gas and a reactant in the process. Pyrolysis products consisted of a biochar, a bio-oil, and pyrolytic gases. According to a 23 factorial experiment, 8 tests were conducted for 1 hr at two levels of each process factor, i.e., specific heat flow rate (7540, 9215 W/m3), carbon dioxide superficial velocity (1.3, 2.6 cm/s), and bulk density of fixed bed biomass (221, 332 kg/m3). Correlations between these factors and final process responses in terms of mean bed temperature (461-663 oC), biochar yield (15.2-26.7%), bio-oil yield (29.9-34.8%), and BET surface area of biochar (45.17-91.12 m2/g) were established.


2017 ◽  
Vol 14 (1) ◽  
pp. 55-59 ◽  
Author(s):  
Ali Bahadir ◽  
Turgay Kar ◽  
Sedat Keles ◽  
Kamil Kaygusuz

Purpose The purpose of this paper is to investigate fast pyrolysis of maple fruit as an energy sources. This could serve as a solution to the energy sources problem. Design/methodology/approach Fast pyrolysis of maple fruit (samara) was achieved in a fixed bed reactor. The pyrolysis experiments have been conducted on the sample of maple seeds to particularly determine the effects of pyrolysis temperature, particle size and sweep gas flow rate on the pyrolysis product yields. Findings The oil of maple fruit from fast pyrolysis has good properties to be a potential candidate as a biofuel or as a source of chemicals. In addition to being environmentally desirable, it can reduce the energy cost, e.g. that Turkey imports a majority of its energy. Originality/value The use of maple fruit for fast pyrolysis and pyrolysis conditions impact on the yields of pyrolysis liquid can be considered as novel aspects of this paper.


Elkawnie ◽  
2020 ◽  
Vol 6 (1) ◽  
pp. 96
Author(s):  
Siti Jamilatun ◽  
Yeni Elisthatiana ◽  
Siti Nurhalizatul Aini ◽  
Ilham Mufandi ◽  
Arief Budiman

Abstract : Dependence on the use of fossil fuels in Indonesia is still quite high, especially crude oil; if no new energy reserves found, it will disrupt long-term energy availability. Biofuel is a renewable energy source derived from biomass, such as the type of microalgae spirulina platensis (SP). Solid residues from SP extraction still contained high levels of protein and carbohydrates. This solid residue can be processed by pyrolysis to produce bio-oil, water phase, charcoal, and gas. Bio-oil and gas products can use as fuel, charcoal can use for pharmaceutical needs, and the water phase as a chemical can use in food and health. The pyrolysis process carried out in a fixed-bed reactor with temperature ranging from 300-600°C. Heating was carried out by electricity through a nickel wire wrapped outside the reactor. Pyrolysis product in the form of gas condensed in the condenser, the condensate formed measured by weight. Char weight measured after the pyrolysis process completed. At the same time, non-condensable gas calculated by gravity from the initial weight difference of SPR minus liquid weight (bio-oil and water phase) and char. SPR samples were analyzed proximate and ultimate, while bio-oil products examined by the GC-MS method. The experimental results showed that the optimum pyrolysis temperature at 500ºC produced by 18.45% of bio-oil, 20% of the water phase, 32.02 of charcoal, and 29.54% of gas by weight. GC-MS results from bio-oil consisted of ketones, aliphatics, nitrogen, alcohol, acids, while PAHs, phenols, and aromatics not found.Abstrak : Ketergantungan penggunaan bahan bakar fosil di Indonesia masih cukup tinggi terutama minyak mentah, jika tidak ditemukan cadangan energi baru maka akan mengganggu ketersediaan energi jangka panjang. Biofuel adalah salah satu sumber energi terbarukan yang berasal dari biomassa seperti jenis mikroalga spirulina platensis (SP). Residu padat dari ekstraksi SP masih mengandung protein dan karbohidrat yang cukup tinggi. Residu padat ini dapat diproses dengan pirolisis untuk menghasilkan bio-minyak, fase air, arang, dan gas. Produk bio-minyak dan gas dapat digunakan untuk bahan bakar, arang dapat digunakan untuk kebutuhan farmasi, dan fase air sebagai bahan kimia dapat digunakan di bidang makanan dan kesehatan. Proses pirolisis dilakukan dalam reaktor fixed-bed dengan suhu 300-600°C. Pemanasan dilakukan dengan listrik melalui kawat nikel yang dibungkus di luar reaktor. Produk pirolisis berupa gas dikondensasi dalam kondensor, kondensat yang terbentuk diukur beratnya. Berat char diukur setelah proses pirolisis selesai, sementara gas yang tidak dapat dikondensasi dihitung beratnya dari perbedaan bobot awal SPR dikurangi bobot cair (bio-oil dan fase air) dan char. Sampel SPR dianalisis proksimat dan ultimat, sedangkan produk bio-minyak dianalisis dengan metode GC-MS. Hasil percobaan menunjukkan bahwa suhu optimum pirolisis adalah 500ºC yang menghasilkan bio-oil, water phase, arang, dan gas berturut-turut adalah 18,45; 20;  32,02 dan 29,54 % berat. Hasil GC-MS dari bio-oil terdiri dari keton, alifatik, nitrogen, alkohol dan asam, sedangkan PAH, fenol dan tidak ditemukan.


2020 ◽  
Vol 849 ◽  
pp. 47-52
Author(s):  
Siti Jamilatun ◽  
Aster Rahayu ◽  
Yano Surya Pradana ◽  
Budhijanto ◽  
Rochmadi ◽  
...  

Nowadays, energy consumption has increased as a population increases with socio-economic developments and improved living standards. Therefore, it is necessary to find a replacement for fossil energy with renewable energy sources, and the potential to develop is biofuels. Bio-oil, water phase, gas, and char products will be produced by utilizing Spirulina platensis (SPR) microalgae extraction residue as pyrolysis raw material. The purpose of this study is to characterize pyrolysis products and bio-oil analysis with GC-MS. Quality fuel is good if O/C is low, H/C is high, HHV is high, and oxygenate compounds are low, but aliphatic and aromatic are high. Pyrolysis was carried out at a temperature of 300-600°C with a feed of 50 grams in atmospheric conditions with a heating rate of 5-35°C/min, the equipment used was a fixed-bed reactor. The higher the pyrolysis temperature, the higher the bio-oil yield will be to an optimum temperature, then lower. The optimum temperature of pyrolysis is 550°C with a bio-oil yield of 23.99 wt%. The higher the pyrolysis temperature, the higher the H/C, the lower O/C. The optimum condition was reached at a temperature of 500°C with the values of H/C, and O/C is 1.17 and 0.47. With an increase in temperature of 300-600°C, HHV increased from 11.64 MJ/kg to 20.63 MJ/kg, the oxygenate compound decreased from 85.26 to 37.55 wt%. Aliphatics and aromatics increased, respectively, from 5.76 to 36.72 wt% and 1.67 to 6.67 wt%.


2014 ◽  
Vol 625 ◽  
pp. 626-629 ◽  
Author(s):  
Mandy Su Zan Gui ◽  
Seyed Amirmostafa Jourabchi ◽  
Hoon Kiat Ng ◽  
Suyin Gan

Slow pyrolysis (SP) and fast pyrolysis (FP) of rice husks, coconut shells and their mixtures were studied in a fixed bed reactor. The objectives of this study were to compare the yields and properties of bio-oils produced using SP and FP methods within a pyrolysis temperature range of 400 °C to 600 °C. Three different biomass compositions, 100% rice husks (RH), 100% coconut shells (CS) and a mixture of 50% rice husks with 50% of coconut shells (RH50/CS50) were experimented. In SP, the maximum yield of bio-oil for RH, CS and RH50/CS50 were 45.45%, 37.01%, 38.29% at temperatures of 550 °C, 500 °C and 600 °C respectively. As for FP, the maximum bio-oil yield obtained for RH, CS and RH50/CS50 were 50.52%, 40.14% and 42.25% at temperatures of 500 °C, 600 °C and 550 °C respectively. At these optimum pyrolysis temperatures, the percentage differences in bio oil yields for SP and FP were 10.57%, 8.11% and 9.83% for RH, CS and RH50/CS50 respectively. Based on American Society for Testing and Materials (ASTM) standard procedures, the properties of bio-oil were characterised and it was found that the bio oil produced by FP at optimum temperatures were less acidic, higher density, lower water content and viscosity as compared to the bio-oil produced by SP method for all biomass compositions.


2013 ◽  
Vol 873 ◽  
pp. 562-566 ◽  
Author(s):  
Juan Liu ◽  
Xia Li ◽  
Qing Jie Guo

Chlorella samples were pyrolysed in a fixed bed reactor with γ-Al2O3 or ZSM-5 molecular sieve catalyst at 600°C. Liquid oil samples was collected from pyrolysis experiments in a condenser and characterized for water content, kinematic viscosity and heating value. In the presence of catalysts , gas yield decreased and liquid yield increased when compared with non-catalytic pyrolysis at the same temperatures. Moreover, pyrolysis oil from catalytic with γ-Al2O3 runs carries lower water content and lower viscosity and higher heating value. Comparison of two catalytic products, the results were showed that γ-Al2O3 has a higher activity than that of ZSM-5 molecular sieve. The acidity distribution in these samples has been measured by t.p.d, of ammonia, the γ-Al2O3 shows a lower acidity. The γ-Al2O3 catalyst shows promise for production of high-quality bio-oil from algae via the catalytic pyrolysis.


Sign in / Sign up

Export Citation Format

Share Document