Anaerobic stabilization of waste activated sludge at different temperatures and solid retention times: Evaluation by sludge reduction, soluble chemical oxygen demand release and dehydration capability

2017 ◽  
Vol 227 ◽  
pp. 398-403 ◽  
Author(s):  
Xiyao Li ◽  
Yongzhen Peng ◽  
Yuelan He ◽  
Shuying Wang ◽  
Siyu Guo ◽  
...  
2013 ◽  
Vol 69 (2) ◽  
pp. 269-277 ◽  
Author(s):  
C. Da Ros ◽  
C. Cavinato ◽  
F. Cecchi ◽  
D. Bolzonella

In this study the anaerobic co-digestion of wine lees together with waste activated sludge in mesophilic and thermophilic conditions was tested at pilot scale. Three organic loading rates (OLRs 2.8, 3.3 and 4.5 kgCOD/m3d) and hydraulic retention times (HRTs 21, 19 and 16 days) were applied to the reactors, in order to evaluate the best operational conditions for the maximization of the biogas yields. The addition of lee to sludge determined a higher biogas production: the best yield obtained was 0.40 Nm3biogas/kgCODfed. Because of the high presence of soluble chemical oxygen demand (COD) and polyphenols in wine lees, the best results in terms of yields and process stability were obtained when applying the lowest of the three organic loading rates tested together with mesophilic conditions.


BioResources ◽  
2020 ◽  
Vol 15 (2) ◽  
pp. 3962-3969
Author(s):  
Binfang Shi ◽  
Jingang Huang ◽  
Zhenjiang Yin ◽  
Wei Han ◽  
Shanshan Qiu ◽  
...  

Fermentative valeric acid production is a promising way to recycle valuable resources from waste activated sludge (WAS). This study investigated the feasibility of using riboflavin (RF) to enhance volatile fatty acids (VFAs) production, especially valeric acid production from WAS coupled with solid reduction. The results indicated that RF (0.5 mM) promoted the VFAs production by up to 41.0%. Valeric acid accounted for the most abundance within the VFAs components. When RF dosages were 0.05 to 5.0 mM in the WAS fermentation systems, the chemical oxygen demand fractions of valeric acid to the total VFAs were 41.0% to 62.8%, which were much higher than those using other chemical supplements. Moreover, RF enhanced the reduction of mixed liquor volatile suspended solids (MLVSS). When RF dosage was 0.2 mM, MLVSS reduction achieved a maximum at 47.4%, compared to that in the RF-free control (33.9% reduction). Riboflavin in this study was considered as a feasible chemical to enhance the fermentative valeric acid generation coupled to MLVSS reduction, realizing the reduction of solids and the reutilization of valuable resources from WAS.


2013 ◽  
Vol 664 ◽  
pp. 111-116
Author(s):  
Ya Nan Hou ◽  
Chun Xue Yang ◽  
Ai Juan Zhou ◽  
Ai Jie Wang

This study investigated the effect of aeration rates on the hydrolysis process of Waste Activated Sludge (WAS) with thermophilic aerobic microbes and explained by the change of solubilization of lipids, carbohydrates and proteins in sludge under different aeration rates (0.03 vvm, 0.05 vvm, 0.07 vvm, 0.09 vvm, 0.11 vvm). The results revealed that with the increase of aeration rate, the accumulation of volatile fatty acids (VFAs) in the treated sludge was decreased. Only 2 142 mg COD/L was accumulated at the ventilation rate of 0.11 vvm, while the highest accumulation which was 4 088 mg/L at the ventilation rate of 0.05 vvm. Further investigation showed that under optimal aeration rate which was 0.05 vvm, theromophilic aerobic microbes facilitated the organism hydrolysis and increased the biodegradability of WAS significantly. The concentration of carbohydrates was improved remarkably from 70 mg COD/L to 560 mg COD/L compared with the control (the process without aeration) at 65°C. Meanwhile, the concentration of protein was increased stably due to the high activity of protease, and reached the peak of 1 320 mg COD/L after 72h, then decline at the later period. The maximal soluble chemical oxygen demand (SCOD) was 5 600 mg/L and VFAs was 4 088 mg COD/L, which would be beneficial to the followed digestion process. Therefore, appropriate aeration is efficient to improve the accumulation of soluble organic matters and VFAs in WAS.


2012 ◽  
Vol 65 (12) ◽  
pp. 2251-2257 ◽  
Author(s):  
E. Athanasoulia ◽  
P. Melidis ◽  
A. Aivasidis

Co-digestion of waste activated sludge (WAS) with agro-industrial organic wastewaters is a technology that is increasingly being applied in order to produce increased gas yield from the biomass. In this study, the effect of olive mill wastewater (OMW) on the performance of a cascade of two anaerobic continuous stirred tank (CSTR) reactors treating thickened WAS at mesophilic conditions was investigated. The objectives of this work were (a) to evaluate the use of OMW as a co-substrate to improve biogas production, (b) to determine the optimum hydraulic retention time that provides an optimised biodegradation rate or methane production, and (c) to study the system stability after OMW addition in sewage sludge. The biogas production rate at steady state conditions reached 0.73, 0.63, 0.56 and 0.46 lbiogas/lreactor/d for hydraulic retention times (HRTs) of 12.3, 14, 16.4 and 19.7 d. The average removal of soluble chemical oxygen demand (sCOD) ranged between 64 and 72% for organic loading rates between 0.49 and 0.75 g sCOD/l/d. Reduction in the volatile suspended solids ranged between 27 and 30%. In terms of biogas selectivity, values of 0.6 lbiogas/g tCOD removed and 1.1 lbiogas/g TVS removed were measured.


2015 ◽  
Vol 41 (1) ◽  
pp. 29-34 ◽  
Author(s):  
Jan Suschka ◽  
Eligiusz Kowalski ◽  
Jerzy Mazierski ◽  
Klaudiusz Grübel

Abstract Improving the effects of hydrolysis on waste activated sludge (WAS) prior to anaerobic digestion is of primary importance. Several technologies have been developed and partially implemented in practice. In this paper, perhaps the simplest of these methods, alkaline solubilization, has been investigated and the results of hydrolysis are presented. An increase to only pH 8 can distinctively increase the soluble chemical oxygen demand (SCOD), and produce an anaerobic condition effect favorable to volatile fatty acids (VFA) production. Further increases of pH, up to pH 10, leads to further improvements in hydrolysis effects. It is suggested that an increase to pH 9 is sufficient and feasible for technical operations, given the use of moderate anti-corrosive construction material. This recommendation is also made having taken in consideration the option of using hydrodynamic disintegration after the initial WAS hydrolysis process. This paper presents the effects of following alkaline solubilization with hydrodynamic disintegration on SCOD


2018 ◽  
Vol 77 (9) ◽  
pp. 2341-2347 ◽  
Author(s):  
Shuang Wu ◽  
Min Zheng ◽  
Qian Dong ◽  
Yanchen Liu ◽  
Chengwen Wang

Abstract Ultrasonic treatment for enhancing biological processes has recently attracted considerable attention in wastewater treatment. In this study, we systematically investigated the mixed liquor properties of activated sludge under ultrasonic treatment. The sludge samples were collected from the aerobic tank of a full-scale membrane bioreactor (MBR) treating municipal wastewater, and the volatile suspended solids (VSS) concentration was approximately 6.0 g/L. The results showed that ultrasonic treatment induced floc disintegration, organics release, temperature increase, microbial activity and pH variation. The maximum mg soluble chemical oxygen demand (COD) per mg VSS released was estimated to be 0.147 using the Monod equation. The exponential increase in the concentration of dissolved organic matter is related to the loss of relative heterotrophic bacterial activity. A sonolysis-cryptic growth model was demonstrated to be capable of describing ultrasonic sludge reduction, which would support the further development of ultrasonic treatment technology in activated sludge systems.


2021 ◽  
Vol 13 (9) ◽  
pp. 4874
Author(s):  
Gan Chin Heng ◽  
Mohamed Hasnain Isa ◽  
Serene Sow Mun Lock ◽  
Choon Aun Ng

Anaerobic digestion (AD) appears to be a popular unit operation in wastewater treatment plant to treat waste activated sludge (WAS) and the produced methane gas can be harvested as renewable energy. However, WAS could inhibit hydrolysis stage during AD and hence pre-treatment is required to overcome the issue. This paper aimed to study the effect of electrochemical pre-treatment (EP) towards efficiency of AD using titanium coated with ruthenium oxide (Ti/RuO2) electrodes. The investigation has been carried out using in-house laboratory batch-scale mesophilic anaerobic digester, mixed under manipulation of important operating parameters. Optimization was performed on EP using response surface methodology and central composite design to maximize sludge disintegration and dewaterability. By operating at optimal conditions (pH 11.65, total solids 22,000 mg/L, electrolysis time 35 min, current density 6 mA/cm2, and 1000 mg/L of sodium chloride), the pre-treated WAS in terms of mixed liquor volatile suspended solids (MLVSS) removal, soluble chemical oxygen demand (sCOD), capillary suction time (CST) reduction, and extracellular polymeric substance (EPS) were 38%, 4800 mg/L (increased from 935 mg/L), 33%, and 218 mg/L, respectively. Following AD, the volatile solids (VS) removal and chemical oxygen demand (COD) removal by EP were enhanced from 40.7% and 54.7% to 47.2% and 61.5%, respectively, at steady-state. The biogas produced from control and electrochemical pre-treated WAS were in the ranges of 0.12 to 0.17 and 0.2 to 0.24 m3/kg VSfed, respectively, and the volume of biogas produced was 44–67% over the control. Based on the results obtained, suitability of EP for WAS prior to AD was confirmed.


2003 ◽  
Vol 48 (3) ◽  
pp. 143-150 ◽  
Author(s):  
C. Yangin Gomec ◽  
R.E. Speece

The effect of pH on anaerobic solubilization of domestic primary sludge and activated sludge was investigated and compared. Anaerobic solubilization was carried out in continuously stirred anaerobic reactors at mesophilic temperature (35°C) and pH was fixed at 6.5 (pH-controlled). Many researches reported the serious effects of pH on the solubilization of organic materials. Thus, the aim of pH control in the reactors consisting of domestic primary and activated sludges, was the evaluation of retardation in hydrolysis/acidogenesis at low pH values. Since primary and activated sludges have different biodegradation characteristics, results were compared. Results indicated that the destruction of Total Suspended Solids (TSS) and Volatile Suspended Solids (VSS) were better in the pH-controlled reactors. In both sludges, acetic acid was the main Volatile Fatty Acid (VFA) produced. In the pH-controlled reactors, VSS reduction was found to be 72% in about 20 days in the anaerobic digestion of activated sludge, whereas for the same interval VSS reduction could only be achieved by 32% in primary sludge at 35°C. When primary sludge was used as substrate, the pH-uncontrolled and the pH-controlled reactors removed VSS with a corresponding production of VFAs and Soluble Chemical Oxygen Demand (SCOD). However, production of VFAs and SCOD was ceased after 5 days in the pH-controlled reactor whereas VFAs and SCOD production continued after 5 days in the pH-uncontrolled reactor, which indicated that hydrolysis and fermentation did not complete and continued longer. On the other hand; in either the pH-uncontrolled or the pH-controlled reactor of activated sludge, VSS was not removed with a corresponding production of VFAs and Soluble Chemical Oxygen Demand (SCOD). It was apparent that solubilization was occurring, however this solubilization was not observed as VFA production. When total methane production and total COD (CODtot) removal were estimated using VSS removal in both types of sludges, results indicated that pH control enhanced biogas productions as well as CODtot removals.


2014 ◽  
Vol 70 (4) ◽  
pp. 742-749 ◽  
Author(s):  
I. G. Byun ◽  
J. H. Lee ◽  
J. M. Lee ◽  
J. S. Lim ◽  
T. J. Park

The activation energy (Ea) for waste-activated sludge (WAS) hydrolysis was compared between microwave irradiation (MW) and conventional heating (CH) methods to evaluate the non-thermal effect of MW. The microwave-assisted hydrolysis of WAS was assumed to follow the first-order kinetics on the basis of volatile suspended solids (VSS) conversion to soluble chemical oxygen demand (SCOD) for different initial VSS concentrations. By comparing the VSS decrement and the SCOD increment between MW and CH at different absolute temperatures of 323, 348 and 373 K, the average ratio of VSS conversion to SCOD was determined to range from 1.42 to 1.64 g SCOD/g VSS. These results corresponded to the theoretical value of 1.69 g SCOD/g VSS based on the assumption that the molecular formula of sludge was C10H19O3N. Consequently, the Ea of the MW-assisted WAS hydrolysis was much lower than that of CH for the same temperature conditions. The non-thermal effect of MW in the hydrolysis of WAS could be identified with the lower Ea than that of CH.


Sign in / Sign up

Export Citation Format

Share Document