Long term effects of cerium dioxide nanoparticles on the nitrogen removal, micro-environment and community dynamics of a sequencing batch biofilm reactor

2017 ◽  
Vol 245 ◽  
pp. 573-580 ◽  
Author(s):  
Yi Xu ◽  
Chao Wang ◽  
Jun Hou ◽  
Peifang Wang ◽  
Lingzhan Miao ◽  
...  
2010 ◽  
Vol 62 (11) ◽  
pp. 2599-2606 ◽  
Author(s):  
Hong Xiao ◽  
Ping Yang ◽  
Hong Peng ◽  
Yanzong Zhang ◽  
Shihuai Deng ◽  
...  

A study was conducted regarding the biological nitrogen removal from the livestock and poultry breeding wastewater (LPBWs) using a novel sequencing batch biofilm reactor (SBBR). Nitrogen removal process was studied under three aeration strategies/modes, referred to as MODE 1, 2, and 3. The results showed that MODE 2 (one operation period: instant fill of LPBWs, 3.0 h aeration, 1.5 h non-aeration, 1.5 h aeration, 1.0 h non-aeration and rapid drain of treated LPBWs) performed the best in nitrogen removal. Under MODE 2, the removal efficiencies were as high as 96.1 and 92.1% for NH3-N and TN, respectively. Simultaneous nitrification and denitrification (SND), as well as shortcut nitrification and denitrification are likely to be the two main mechanisms for the nitrogen removal in this study. Nitrifying bateria were not inhibited by heterotrophic bacteria with C/N ratios ranging from 18.1 to 21.4 and DO concentration of 2.0 mg/l. Alternation between aeration and non-aeration played an important role in NO2−-N accumulation.


2016 ◽  
Vol 74 (11) ◽  
pp. 2666-2674 ◽  
Author(s):  
A. Sarti ◽  
A. W. Lamon ◽  
A. Ono ◽  
E. Foresti

This study proposes a new approach to selecting a biofilm carrier for immobilization using dissolved oxygen (DO) microsensors to measure the thickness of aerobic and anaerobic layers in biofilm. The biofilm carriers tested were polyurethane foam, mineral coal (MC), basaltic gravel, and low-density polyethylene. Development of layers in the biofilm carrier surface was evaluated using a flow cell device, and DO profiles were conducted to determine the size of the layers (aerobic and anaerobic). MC was the biofilm carrier selected due to allowing the development of larger aerobic and anaerobic layers in the biofilm (896 and 1,058 μm, respectively). This ability is supposed to improve simultaneous nitrogen removal by nitrification and denitrification biological processes. Thus, as a biofilm carrier, MC was used in a fixed-bed sequencing batch biofilm reactor (FB-SBBR) for treatment of wastewater with a high ammonia concentration (100–400 mgNH4+-N L−1). The FB-SBBR (15.0 L) was filled with matrices of the carrier and operated under alternating aeration and non-aeration periods of 6 h each. At a mean nitrogen loading rate of 0.55 ± 0.10 kgNH4+-N m−3 d−1, the reactor attained a mean nitrification efficiency of 95 ± 9% with nitrite as the main product (aerobic period). Mean denitrification efficiency during the anoxic period was 72 ± 13%.


Chemosphere ◽  
2018 ◽  
Vol 193 ◽  
pp. 479-488 ◽  
Author(s):  
Huayu Li ◽  
Hong Yao ◽  
Dayi Zhang ◽  
Lushen Zuo ◽  
Jia Ren ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document