Increasing ethanol yield through fiber conversion in corn dry grind process

2018 ◽  
Vol 270 ◽  
pp. 742-745 ◽  
Author(s):  
Chinmay V. Kurambhatti ◽  
Deepak Kumar ◽  
Kent D. Rausch ◽  
M.E. Tumbleson ◽  
Vijay Singh
Keyword(s):  
2009 ◽  
Vol 86 (3) ◽  
pp. 355-360 ◽  
Author(s):  
Carlos R. Lemuz ◽  
Bruce S. Dien ◽  
Vijay Singh ◽  
John McKinney ◽  
M. E. Tumbleson ◽  
...  

2003 ◽  
Author(s):  
Vijay Singh ◽  
Bruce S. Dien ◽  
Rodney J. Bothast ◽  
Robert A. Moreau ◽  
David B. Johnston ◽  
...  
Keyword(s):  

2013 ◽  
Vol 14 (2) ◽  
pp. 118-124 ◽  

Olive oil mill solid residue (OMSR) is the solid waste generated during olive oil production process in three-phase olive mills. It consists of the remaining pulp of olive processing after the extraction of oil, as well as the cracked seeds of the olive fruits, containing thus mainly lignocellulose and residual oil. The commonly used practice for OMSR management is combustion, after having extracted the residual oil by secondary extraction using organic solvents. Other proposed ways of OMSR management are their exploitation as substrate for edible fungi production and compost, and as feedstock for biofuels generation such as methane and bioethanol. In the latter case, the complex carbohydrates (cellulose and hemicellulose) of the lignocellulose of OMSR have to be degraded towards their simple sugars and further fermented via microorganisms. The purpose of the present study was to investigate the effect of thermochemical pre-treatment of OMSR, on the final ethanol yield from the yeast Pachysolen tannophilus. Nine different types of OMSR-based substrates were tested i.e. raw OMSR, hydrolysates generated from pretreated OMSR with NaOH (0.5 %, 1.5 % w/v) and H2SO4 (0.5 %, 1.5 % v/v), and pretreated OMSR with NaOH (0.5 %, 1.5 % w/v) and H2SO4 (0.5 %, 1.5 % v/v) whole biomass. It was shown that in all cases pretreatment enhanced the consumption of carbohydrates as well as ethanol final yields.


Molecules ◽  
2020 ◽  
Vol 25 (4) ◽  
pp. 1013 ◽  
Author(s):  
Jarosław Domański ◽  
Olga Marchut-Mikołajczyk ◽  
Weronika Cieciura-Włoch ◽  
Piotr Patelski ◽  
Urszula Dziekońska-Kubczak ◽  
...  

The study describes sulfuric acid pretreatment of straw from Secale cereale L. (rye straw) to evaluate the effect of acid concentration and treatment time on the efficiency of biofuel production. The highest ethanol yield occurred after the enzyme treatment at a dose of 15 filter paper unit (FPU) per gram of rye straw (subjected to chemical hydrolysis with 2% sulfuric acid (SA) at 121 °C for 1 h) during 120 h. Anaerobic digestion of rye straw treated with 10% SA at 121 °C during 1 h allowed to obtain 347.42 L methane/kg volatile solids (VS). Most hydrogen was released during dark fermentation of rye straw after pretreatment of 2% SA, 121 °C, 1 h and 1% SA, 121 °C, 2 h—131.99 and 134.71 L hydrogen/kg VS, respectively. If the rye straw produced in the European Union were processed into methane, hydrogen, ethanol, the annual electricity production in 2018 could reach 9.87 TWh (terawatt-hours), 1.16 TWh, and 0.60 TWh, respectively.


Fermentation ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 59
Author(s):  
Timothy J. Tse ◽  
Daniel J. Wiens ◽  
Jianheng Shen ◽  
Aaron D. Beattie ◽  
Martin J. T. Reaney

As barley and oat production have recently increased in Canada, it has become prudent to investigate these cereal crops as potential feedstocks for alcoholic fermentation. Ethanol and other coproduct yields can vary substantially among fermented feedstocks, which currently consist primarily of wheat and corn. In this study, the liquified mash of milled grains from 28 barley (hulled and hull-less) and 12 oat cultivars were fermented with Saccharomyces cerevisiae to determine concentrations of fermentation products (ethanol, isopropanol, acetic acid, lactic acid, succinic acid, α-glycerylphosphorylcholine (α-GPC), and glycerol). On average, the fermentation of barley produced significantly higher amounts of ethanol, isopropanol, acetic acid, succinic acid, α-GPC, and glycerol than that of oats. The best performing barley cultivars were able to produce up to 78.48 g/L (CDC Clear) ethanol and 1.81 g/L α-GPC (CDC Cowboy). Furthermore, the presence of milled hulls did not impact ethanol yield amongst barley cultivars. Due to its superior ethanol yield compared to oats, barley is a suitable feedstock for ethanol production. In addition, the accumulation of α-GPC could add considerable value to the fermentation of these cereal crops.


Sign in / Sign up

Export Citation Format

Share Document