Rapid achieving partial nitrification in domestic wastewater: Controlling aeration time to selectively enrich ammonium oxidizing bacteria (AOB) after simultaneously eliminating AOB and nitrite oxidizing bacteria (NOB)

2021 ◽  
Vol 328 ◽  
pp. 124810
Author(s):  
Shuai Li ◽  
Jialin Li ◽  
Shenhua Yang ◽  
Qiong Zhang ◽  
Xiyao Li ◽  
...  
2011 ◽  
Vol 356-360 ◽  
pp. 1046-1049 ◽  
Author(s):  
Yu Chen ◽  
Jun Li ◽  
C .W Wang ◽  
X.F Zhao ◽  
B.H Zhao

Sustainable partial nitrification to nitrite has been proven difficult in treating low strength nitrogenous wastewater. Real-time aeration duration control was used to achieve efficient partial nitrification to nitrite in a sequencing batch reactor (SBR) to treat low strength domestic wastewater. Above 95% nitrite accumulation ratio was maintained for long-term operation at normal condition. Partial nitrification established by controlling aeration duration showed good performance and robustness even though some time encountering long-term extended aeration. Process control enhanced the successful accumulation of ammonia oxidizing bacteria (AOB) and washout of nitrite oxidizing bacteria (NOB).


2011 ◽  
Vol 255-260 ◽  
pp. 2815-2818 ◽  
Author(s):  
Tao Tao Zeng ◽  
Dong Li ◽  
Jie Zhang

This study focused on star-up of the partial nitrification in sequencing batch biofilm reactor (SBBR) with domestic wastewater at room temperature. No significant nitrate formation was observed during the full period of operation and the nitrite oxidizing bacteria (NOB) was successfully outcompeted. When influent ammonium concentration decreased from 200mg/L to 80mg/L, a stable influent at a ratio of 1.03 NO2-N/NH4-N was produced after 44 continuous cycles(33d)and that indicated partial nitrification achievement. A recommended start-up strategy based on high FA concentration and aeration control was proposed to achieve partial nitrification with low ammonium strength wastewater at room temperature.


Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 346
Author(s):  
Keugtae Kim ◽  
Yong-Gyun Park

Conventional biological nutrient removal processes in municipal wastewater treatment plants are energy-consuming, with oxygen supply accounting for 45–75% of the energy expenditure. Many recent studies examined the implications of the anammox process in sidestream wastewater treatment to reduce energy consumption, however, the process did not successfully remove nitrogen in mainstream wastewater treatment with relatively low ammonia concentrations. In this study, blue light was applied as an inhibitor of nitrite-oxidizing bacteria (NOB) in a photo sequencing batch reactor (PSBR) containing raw wastewater. This simulated a biological nitrogen removal system for the investigation of its application potential in nitrite accumulation and nitrogen removal. It was found that blue light illumination effectively inhibited NOB rather than ammonia-oxidizing bacteria due to their different sensitivity to light, resulting in partial nitrification. It was also observed that the NOB inhibition rates were affected by other operational parameters like mixed liquor suspended solids (MLSS) concentration and sludge retention time (SRT). According to the obtained results, it was concluded that the process efficiency of partial nitrification and anammox (PN/A) could be significantly enhanced by blue light illumination with appropriate MLSS concentration and SRT conditions.


2009 ◽  
Vol 60 (12) ◽  
pp. 3243-3251 ◽  
Author(s):  
Jianhua Guo ◽  
Shuying Wang ◽  
Huijun Huang ◽  
Yongzhen Peng ◽  
Shijian Ge ◽  
...  

Nitrogen removal via the nitrite pathway has the potential of reducing the requirements for aeration consumption and carbon source. However, the development of an efficient and quick start-up strategy for partial nitrification to nitrite has proven difficult in the treatment of low strength wastewater. In this study, the feasibility of partial nitrification achieved by using real-time aeration duration control was not only demonstrated from the kinetic mechanism, but also was validated in three sequencing batch reactors (SBRs) fed with low C/N domestic wastewater. Nitrite accumulation could be achieved when aeration was terminated as soon as an inflexion pH point was reached (the dpH/dt became from negative to positive). The reduction or limitation of the NOB growth could be achieved through aeration duration control, due to leaving no extra time for NOB to convert the accumulated nitrite. The experimental operation results also showed that partial nitrification with nitrite accumulation ratios of over 80% was achieved successfully in these three reactors with process control. Fluorescence in situ hybridization (FISH) analysis indicated the reduction of NOB was achieved and AOB became the dominant nitrifying bacteria. Moreover, an integrated start-up strategy based on aeration duration control was proposed to quickly achieve partial nitrification to nitrite.


2013 ◽  
Vol 807-809 ◽  
pp. 1564-1569
Author(s):  
Xiao Jing Zhang ◽  
Dong Li ◽  
Yu Long Zhang ◽  
Yong Ping He ◽  
Jie Zhang

Partial nitrification (PN) was rapidly started-up in a sequencing batch membrane bioreactor (MBR) treating domestic wastewater with low temperature (11~15°C), the influence of alkalinity on PN process and the feasibility to control the ratio of nitrite to ammonia in effluent were investigated through changing the ratio of Alkalinity/ammonia in influent. Results showed that effluent ratio can be controlled flexibly with the liner relationship between ammonia conversion and the ratio of alkalinity to ammonia when alkalinity is insufficient, whereas, that could be effectively achieved by the indicator role of alkalinity on nitrite. Phylogenetic results indicated the predominance ofNitrosomonasand the absence of theNitrosospirain the condition of insufficient alkalinity, which was consistent with the SEM results. FISH results suggested that lack of alkalinity presented little impact on the relative quantity of AOB.


2019 ◽  
Vol 96 (1) ◽  
Author(s):  
Qingkun Wang ◽  
Jianzhong He

ABSTRACT Reliable tools for quantification of different functional populations are required to achieve stable, effective nutrients removal in partial nitrification and anammox (PN/A) processes. Here we report the design and validation of degenerate PCR primer pairs targeting anammox bacteria, aerobic ammonium-oxidizing bacteria (AeAOB) and nitrite-oxidizing bacteria (NOB) with high coverage but without sacrificing specificity. The new primer pairs are able to cover a broader range of the targeted populations (58.4 vs 21.7%, 49.5 vs 47.6%, 80.7 vs 57.2% and 70.5 vs 42.3% of anammox bacteria, AeAOB, Nitrobacter and Nitrospina, respectively) than previously published primers. Particularly, the Amx719F/875R primer can retrieve a larger number of 16S rRNA genes from different types of samples with amplicons covering all known anammox bacteria genera (100% coverage) including the recently found novel genus, Asahi BRW. These newly desinged primers will provide a more reliable molecular tool to investigate the mechanisms of nitrogen removal in PN/A processes, which can provide clearer links between reactor performance, the metabolic activities and abundances of functional populations, shedding light on conditions that are favorable to the establishment of stable PN/A.


2009 ◽  
Vol 60 (10) ◽  
pp. 2685-2693 ◽  
Author(s):  
Irene Jubany ◽  
Juan Antonio Baeza ◽  
Javier Lafuente ◽  
Julian Carrera

Achievement of partial nitrification relies on the different characteristics of the microorganisms involved in the two steps of nitrification (AOB, ammonium oxidizing bacteria and NOB, nitrite oxidizing bacteria). Several configurations and conditions have been used to achieve partial nitrification taking into account their different responses in front of some environmental conditions like pH, temperature (T), dissolved oxygen (DO) and the inhibitory compounds free ammonia (FA) and free nitrous acid (FNA). This work is a theoretical study about the utilization of a control strategy based on controlling OUR by manipulating the influent flow-rate together with additional changes in T, pH or DO for achieving stable partial nitrification. Two different configurations were simulated. Configuration A consisted of three continuous stirred-tank reactors in series plus a settler, while configuration B consisted of a single reactor with the same total volume and a settler. The developed control system was shown as a good tool to achieve partial nitrification with both configurations. Nevertheless, configuration A showed better results and partial nitrification was obtained even under theoretically unfavourable conditions as T = 15°C, pH = 8.3 and DO = 3 mg O2 L−1.


Water ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 2270 ◽  
Author(s):  
Hussein Al-Hazmi ◽  
Dominika Grubba ◽  
Joanna Majtacz ◽  
Przemyslaw Kowal ◽  
Jacek Makinia

A one-stage partial nitritation/anammox (PN/A) process with intermittent aeration is possible under sidestream conditions, but implementation in a mainstream is a challenge due to increased Carbon/Nitrogen (C/N) ratios in domestic wastewater. This study investigated the effect of C/N ratios on process efficiency and the effect of narrowing non-aeration time on process improvement at high chemical oxygen demand (COD) load. An increase in TN removal efficiency was achieved in both series with gradual change of C/N ratio from 1 to 3, from 65.1% to 83.4% and 63.5% to 78% in 1st and 2nd series, respectively. However, at the same time, the ammonium utilization rate (AUR) value decreased with the increase in C/N ratio. At a high COD (C/N = 3) concentration, the process broke down and regained productivity after narrowing the non-aeration time in both series. Shifts in the system performance were also connected to adaptive changes in microbial community revealed by data obtained from 16S rRNA NGS (next-generation sequencing), which showed intensive growth of the bacteria with dominant heterotrophic metabolism and the decreasing ratio of autotrophic bacteria. The study shows that deammonification is applicable to the mainstream provided that the C/N ratio and the aeration/non-aeration time are optimized.


2017 ◽  
Vol 65 (4) ◽  
pp. 1527 ◽  
Author(s):  
Abad Rodríguez Rodríguez ◽  
Silvia Mau Inchaustegui ◽  
Lilliana Piedra Castro ◽  
Ricardo Jiménez Montealegre ◽  
Juan Pablo Herrera Vargas

Currently, nitrogen has become the main element of water pollution, causing riverine, lacustrine and coastal eutrophication. The continuous contamination of aquifers and the absence of planned water resource utilization, boost its scarcity, and has been the only way in which our societies become aware of the urgent need to process the generated wastewater. The objective of this research was to evaluate the nitrifying capacity of different autochthonous bacterial isolates from soils from nearby sources of domestic wastewater drainage. For this, bacteria were isolated from Pirro River, contaminated with nitrogen of domestic sewage. Nitrifying bacteria were counted by serial dilution and agar plates, and were isolated until obtaining axenic colonies. These were identified by biochemical batteries or genetic sequencing, and the quantification of their nitrifying capacity was obtained by the methods 4500- NH4 + -F and 4500-NO-2-B, all between September 26, 2011 and March 16, 2014. A total of seven strains of nitrifying microorganisms were isolated and purified, including four Streptomyces sp., one Pseudomonas putida, one Sphingomonas sp. and one Aeromonas sp. We found that there were 2.23 x 105 UFC/g of soil of ammonium oxidizing bacteria and 2.2 x 104 CFU/g of soil of nitrite oxidizing bacteria in the samples. The quantification of the nitrifying capacity of the strains by colorimetric methods, determined that the maximum ammonium removal capacity was 0.050 mg N/L/day and 0.903 mg N/L/day of nitrite. The collection of few strains of nitrifying organisms and a low CFU count, can be attributed to the technique used, since this only recovers 1 % of the microorganisms present in a sample, which, however, is acceptable for studies which main purpose is to obtain cultivable microorganisms. Future research should consider removal tests with higher ammonium and nitrite levels, to find the maximum capacity of the isolated microorganisms, and evaluate their potential use in wastewater treatment systems.


Sign in / Sign up

Export Citation Format

Share Document