Valorization of food waste and poultry manure through co-composting amending saw dust, biochar and mineral salts for value-added compost production

2021 ◽  
pp. 126442
Author(s):  
Balasubramani Ravindran ◽  
Natchimuthu Karmegam ◽  
Mukesh Kumar Awasthi ◽  
Soon Woong Chang ◽  
P.K. Selvi ◽  
...  
Author(s):  
Madhuri Santosh Bhandwalkar

To link food demand and reduction in food waste, proactive approaches should be taken. Perishable food is mainly fruits and vegetables, waste from different processing industries like pulses, meat products, oil products, dairy products, and fishery byproducts. Conventional food waste management solution is land filling which is not sustainable as it generates global warming gases like methane and carbon dioxide. To reduce food waste, the process known as “food valorization” has become another solution to landfilling, the concept which is given by European Commission in 2012, meaning food processing waste conversion to value-added products. In this chapter the study focuses on production of industrially important enzymes from food waste which could be one of the reactive solutions. Different enzymes like pectinase, peroxidase, lipase, glucoamylase, and protease can be produced from food waste.


Author(s):  
Baban Baburao Gunjal

Food waste is the most challenging issue humankind is facing worldwide. Food waste, which consists of carbohydrates, proteins, lipids, and inorganic compounds, is a biodegradable waste discharged from food processing industries, households, and hospitality sectors. The management of food waste is very important. The food waste generated is usually incinerated or dumped in open areas which may cause severe health and environmental issues. The management of food waste can be done by conversion to different value-added products, for example, phytochemicals, bioactive compounds, food supplements, livestock feed, dietary fibers, biopigments and colorants, emulsifiers, edible and essential oils, biopreservatives, biofertilizers, biofuels, and single cell proteins. The value-added products from food waste will be very eco-friendly. The chapter will focus on different value-added products from food waste.


2021 ◽  
pp. 91-126
Author(s):  
M. Subhosh Chandra ◽  
M. Srinivasulu ◽  
P. Suresh Yadav ◽  
B. Ramesh ◽  
G. Narasimha ◽  
...  

2020 ◽  
Vol 12 (12) ◽  
pp. 5222 ◽  
Author(s):  
A. Sinan Akturk ◽  
Goksel N. Demirer

The positive effects of conductive material supplementation on anaerobic digestion have been mainly investigated for single synthetic substrates, while its significance for real and complex organic wastes such as food waste has not been sufficiently investigated. This study investigated the effect of conductive material (biochar and magnetite) and trace metal supplementation on the anaerobic digestion of food waste by means of biochemical methane potential assays. The results indicated that the supplementation of biochar and trace metals improved both total biogas production and methane yields. A biochar dose of 2.0 and 5.0 g/L resulted in 11.2 ± 6.5 and 27.3 ± 9.5% increase in biogas and 8.3 ± 6.8 and 33.2 ± 2.8% increase in methane yield, respectively. Moreover, the same reactors demonstrated high food waste stabilization performance of over 80% chemical oxygen demand removal efficiency. These results indicate that biochar supplementation leads to more enhanced anaerobic digestion operation that could be through increased surface area for microbial growth and/or direct interspecies electron transfer mechanism. In turn, food waste will not only be stabilized but also valorized by anaerobic digestion at higher efficiencies that support sustainable waste management through both environmentally safe disposal and value-added generation.


2019 ◽  
pp. 93-126
Author(s):  
Rana Mustafa ◽  
Martin J. T. Reaney
Keyword(s):  

2017 ◽  
Vol 61 ◽  
pp. 455-460 ◽  
Author(s):  
Yi Niu ◽  
Dong Zheng ◽  
Binghua Yao ◽  
Zizhe Cai ◽  
Zhimin Zhao ◽  
...  

Processes ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 2228
Author(s):  
Edgaras Stunžėnas ◽  
Irina Kliopova ◽  
Daina Kliaugaitė ◽  
Rimas Pranas Budrys

A considerable amount of food waste ends up in centralized treatment plants due to the lack of preventive measures, resulting in significant environmental impacts. Hospitality food waste management is even more resource-intensive because of animal by-products regulation. According to this regulation, companies must store and then consign waste to specific waste managers. The extensive need for transportation of high-moisture-content materials is the leading cause of the impact. Moreover, the management of category III animal by-products is costly for companies. A previous study has shown the economic benefits of decentralized animal by-product treatment by intensive composting in catering companies. Although the produced compost was characterized by exceptional quality parameters, it was phytotoxic. The investigation of hospitality waste management is scarcely discussed among scholars, and waste management on a regional scale is nearly absent. This study examines the regional management of hospitality food waste by exploiting the municipal waste management infrastructure and intensive composting at the source. The co-maturation experiment with animal by-products and municipal green waste primary composts showed that the phytotoxicity parameters of the cured compost were in the optimal range or below the thresholds (conductivity (1.1 mS cm−1), dissolved organic carbon (82 mg kg−1), and NH4+/NO3− ratio (0.0027)). Additionally, the amounts of total nitrogen, water-soluble nitrogen, and water-soluble phosphorus in the compost were rated as very high. Finally, inventory and environmental impact analysis of the current and planned management approaches showed a reduction in 12 of 18 impact categories.


2022 ◽  
Vol 10 (1) ◽  
pp. 164
Author(s):  
Carlotta Alias ◽  
Daniela Bulgari ◽  
Emanuela Gobbi

This study aimed at valorizing digestate through Trichoderma spp. solid-state fermentation (SSF) to produce a potentially ameliorated fertilizer combined with fungal biomass as a value-added bioproduct. Plant-growth-promoting Trichoderma atroviride Ta13, T. reesei RUT-C30, T. asperellum R, and T. harzianum T-22 were tested on different SSF substrates: whole digestate (WD), digestate dried up with wood sawdust (SSF1), and digestate enriched with food waste and dried up with wood sawdust (SSF2). The fungal biomass was quantified by using a qPCR assay. The growth of the four Trichoderma spp. was only observed on the SSF2 substrate. The highest quantity of mycelium was produced by T. reesei RUT-30 (689.80 ± 80.53 mg/g substrate), followed by T. atroviride Ta13, and T. asperellum R (584.24 ± 13.36 and 444.79 ± 91.02 mg/g substrate). The germination of Lepidium sativum seeds was evaluated in order to assess the phytoxicity of the Trichoderma-enriched substrate. The treatments with 7.5% SSF2-R, 3.75% SSF2-T-22, and 1.8% SSF2-Ta13 equally enhanced the root elongation in comparison to the non-fermented SSF-2. This study demonstrated that digestate, mixed with agro-food waste, was able to support the cultivation of Trichoderma spp., paving the way to the valorization of fermented digestate as a proper biofertilizer.


Sign in / Sign up

Export Citation Format

Share Document