Nanopore biphasic-pulse biosensor

2019 ◽  
Vol 146 ◽  
pp. 111740 ◽  
Author(s):  
Hong Sun ◽  
Fujun Yao ◽  
Xiao-Feng Kang
Keyword(s):  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Hudong Zhang ◽  
Xiaolong Tan ◽  
Yufeng Pan ◽  
Yuan Chai

Recent clinical practice has found that the spike-wave discharge (SWD) scopes of absence seizures change from small cortical region to large thalamocortical networks, which has also been proved by theoretical simulation. The best biophysics explanation is that there are interactions between coupled cortico-thalamic and thalamocortical circuits. To agree with experiment results and describe the phenomena better, we constructed a coupled thalamocortical model with bidirectional channel (CTMBC) to account for the causes of absence seizures which are connected by the principle of two-way communication of neural pathways. By adjusting the coupling strength of bidirectional pathways, the spike-wave discharges are reproduced. Regulatory mechanism for absence seizures is further applied to CTMBC via four different targeted therapy schemes, such as deep brain stimulation (DBS), charge-balanced biphasic pulse (CBBP), coordinated reset stimulation (CRS) 1 : 0, and (CRS) 3 : 2. The new CTMBC model shows that neurodiversity in bidirectional interactive channel could supply theory reference for the bidirectional communication mode of thalamocortical networks and the hypothesis validation of pathogenesis.


2015 ◽  
Vol 2015 ◽  
pp. 1-5 ◽  
Author(s):  
Tiago Araújo ◽  
Rui Candeias ◽  
Neuza Nunes ◽  
Hugo Gamboa

Introduction. Compound Muscle Action Potential (CMAP) scan is a noninvasive promissory technique for neurodegenerative pathologies diagnosis. In this work new CMAP scan protocols were implemented to study the influence of electrical pulse waveform on peripheral nerve excitability. Methods. A total of 13 healthy subjects were tested. Stimulation was performed with an increasing intensities range from 4 to 30 mA. The procedure was repeated 4 times per subject, using a different single pulse stimulation waveform: monophasic square and triangular and quadratic and biphasic square. Results. Different waveforms elicit different intensity-response amplitude curves. The square pulse needs less current to generate the same response amplitude regarding the other waves and this effect is gradually decreasing for the triangular, quadratic, and biphasic pulse, respectively. Conclusion. The stimulation waveform has a direct influence on the stimulus-response slope and consequently on the motoneurons excitability. This can be a new prognostic parameter for neurodegenerative disorders.


Author(s):  
Kunal Bhoyania ◽  
◽  
Chetan B.Bhatt ◽  
Chirag Panchal

Cancers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3233
Author(s):  
Haosu Zhang ◽  
Petro Julkunen ◽  
Axel Schröder ◽  
Anna Kelm ◽  
Sebastian Ille ◽  
...  

Navigated transcranial magnetic stimulation (nTMS) is increasingly used for mapping of motor function prior to surgery in patients harboring motor-eloquent brain lesions. To date, single-pulse nTMS (sp-nTMS) has been predominantly used for this purpose, but novel paired-pulse nTMS (pp-nTMS) with biphasic pulse application has been made available recently. The purpose of this study was to systematically evaluate pp-nTMS with biphasic pulses in comparison to conventionally used sp-nTMS for preoperative motor mapping of lower extremity (lE) muscle representations. Thirty-nine patients (mean age: 56.3 ± 13.5 years, 69.2% males) harboring motor-eloquent brain lesions of different entity underwent motor mapping of lE muscle representations in lesion-affected hemispheres and nTMS-based tractography of the corticospinal tract (CST) using data from sp-nTMS and pp-nTMS with biphasic pulses, respectively. Compared to sp-nTMS, pp-nTMS enabled motor mapping with lower stimulation intensities (61.8 ± 13.8% versus 50.7 ± 11.6% of maximum stimulator output, p < 0.0001), and it provided reliable motor maps even in the most demanding cases where sp-nTMS failed (pp-nTMS was able to provide a motor map in five patients in whom sp-nTMS did not provide any motor-positive points, and pp-nTMS was the only modality to provide a motor map in one patient who also did not show motor-positive points during intraoperative stimulation). Fiber volumes of the tracked CST were slightly higher when motor maps of pp-nTMS were used, and CST tracking using pp-nTMS data was also possible in the five patients in whom sp-nTMS failed. In conclusion, application of pp-nTMS with biphasic pulses enables preoperative motor mapping of lE muscle representations even in the most challenging patients in whom the motor system is at high risk due to lesion location or resection.


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Ehud J Schmidt ◽  
Hassan Elahi ◽  
Ryan Baumgaertner ◽  
Henry R Halperin

Introduction: External defibrillators are used for cardioversion and resuscitation after sudden cardiac arrest (SCA). External defibrillators are also required for emergency MRI (acute stroke, spinal trauma). Low-power (9 Joule) ICD RPDs [1], and MRI-conditional external defibrillator prototypes exist [2]. An RPD external defibrillator was constructed, consisting of a Zoll defibrillator integrated with a tetanizing unit. The tetanizing waveform slowly compressed chest musculature prior to the strong biphasic defibrillating pulse, reducing chest contraction during the biphasic pulse, the major pain source. This RPD system (Fig. 1A-D) was evaluated for pain reduction and defibrillation effectiveness in swine. Method: The tetanizing unit consisted of a programmable generator that delivered a triangular 1-KHz pulse of 250-2000msec duration and 10-100 Volt peak amplitude, and subsequently triggered the conventional defibrillator to send out standard short (8msec) powerful (20-400 J) biphasic pulses. Forward limb motion (Fig. 1E), an established pain measure [3], was evaluated by measuring limb acceleration, acceleration rate and work (energy). 5 swine were arrested electrically and then defibrillated. RPD was repeated 15-20 times/swine, varying tetanizing parameters and biphasic energy. Results: Fig. 1F-H compare an RPD defibrillation and equivalent biphasic defibrillation, showing smaller accelerations and acceleration rates. Fig. 1J shows work results, at 30-200J biphasic energy, demonstrating an 83 + 15% limb work reduction with the RPD waveforms. Optimal tetanizing parameters were 15-25V amplitude and 500-750msec duration. Rhythm recovery for RPD and conventional defibrillation was identical. Conclusions: Reduced pain defibrillation may allow cardioversion without anesthesia and faster defibrillation after SCA. References: [1] Hunter DW 2016. [2] Schmidt EJ 2016. [3] Boriani G, 2005.


2018 ◽  
Vol 46 ◽  
pp. 41-46 ◽  
Author(s):  
Sol De Jesus ◽  
Leonardo Almeida ◽  
Leili Shahgholi ◽  
Daniel Martinez-Ramirez ◽  
Jaimie Roper ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document