scholarly journals Label-free SERS detection of Raman-Inactive protein biomarkers by Raman reporter indicator: Toward ultrasensitivity and universality

2021 ◽  
Vol 174 ◽  
pp. 112825 ◽  
Author(s):  
Maryam Arabi ◽  
Abbas Ostovan ◽  
Zhiyang Zhang ◽  
Yunqing Wang ◽  
Rongchao Mei ◽  
...  
2019 ◽  
Vol 17 ◽  
Author(s):  
Xiaoli Yu ◽  
Lu Zhang ◽  
Na Li ◽  
Peng Hu ◽  
Zhaoqin Zhu ◽  
...  

Aim: We aimed to identify new plasma biomarkers for the diagnosis of Pulmonary tuberculosis. Background: Tuberculosis is an ancient infectious disease that remains one of the major global health problems. Until now, effective, convenient, and affordable methods for diagnosis of Pulmonary tuberculosis were still lacked. Objective: This study focused on construct a label-free LC-MS/MS based comparative proteomics between six tuberculosis patients and six healthy controls to identify differentially expressed proteins (DEPs) in plasma. Method: To reduce the influences of high-abundant proteins, albumin and globulin were removed from plasma samples using affinity gels. Then DEPs from the plasma samples were identified using a label-free Quadrupole-Orbitrap LC-MS/MS system. The results were analyzed by the protein database search algorithm SEQUEST-HT to identify mass spectra to peptides. The predictive abilities of combinations of host markers were investigated by general discriminant analysis (GDA), with leave-one-out cross-validation. Results: A total of 572 proteins were identified and 549 proteins were quantified. The threshold for differentially expressed protein was set as adjusted p-value < 0.05 and fold change ≥1.5 or ≤0.6667, 32 DEPs were found. ClusterVis, TBtools, and STRING were used to find new potential biomarkers of PTB. Six proteins, LY6D, DSC3, CDSN, FABP5, SERPINB12, and SLURP1, which performed well in the LOOCV method validation, were termed as potential biomarkers. The percentage of cross-validated grouped cases correctly classified and original grouped cases correctly classified is greater than or equal to 91.7%. Conclusion: We successfully identified five candidate biomarkers for immunodiagnosis of PTB in plasma, LY6D, DSC3, CDSN, SERPINB12, and SLURP1. Our work supported this group of proteins as potential biomarkers for pulmonary tuberculosis, and be worthy of further validation.


Small ◽  
2021 ◽  
pp. 2100755
Author(s):  
Sara Gullace ◽  
Verónica Montes‐García ◽  
Victor Martín ◽  
David Larios ◽  
Valentina Girelli Consolaro ◽  
...  

2007 ◽  
Vol 12 (5) ◽  
pp. 311-317 ◽  
Author(s):  
Vindhya Kunduru ◽  
Shalini Prasad

We demonstrate a technique to detect protein biomarkers contained in vulnerable coronary plaque using a platform-based microelectrode array (MEA). The detection scheme is based on the property of high specificity binding between antibody and antigen similar to most immunoassay techniques. Rapid clinical diagnosis can be achieved by detecting the amount of protein in blood by analyzing the protein's electrical signature. Polystyrene beads which act as transportation agents for the immobile proteins (antigen) are electrically aligned by application of homogenous electric fields. The principle of electrophoresis is used to produce calculated electrokinetic movement among the anti-C-reactive protein (CRP), or in other words antibody funtionalized polystyrene beads. The electrophoretic movement of antibody-functionalized polystyrene beads results in the formation of “Microbridges” between the two electrodes of interest which aid in the amplification of the antigen—antibody binding event. Sensitive electrical equipment is used for capturing the amplified signal from the “Microbridge” which essentially behaves as a conducting path between the two electrodes. The technique circumvents the disadvantages of conventional protein detection methods by being rapid, noninvasive, label-free, repeatable, and inexpensive. The same principle of detection can be applied for any receptor—ligand-based system because the technique is based only on the volume of the analyte of interest. Detection of the inflammatory coronary disease biomarker CRP is achieved at concentration levels spanning over the lower microgram/milliliter to higher order nanogram/milliliter ranges.


Author(s):  
Nian-Nian Bi ◽  
Song Zhao ◽  
Jian-Feng Zhang ◽  
Ying Cheng ◽  
Chen-Yang Zuo ◽  
...  

Schistosomiasis is a chronic parasitic disease that continues to be a pressing public health problem in many developing countries. The primary pathological damage from the disease is granuloma and fibrosis caused by egg aggregation, and early treatment can effectively prevent the occurrence of liver fibrosis. Therefore, it is very important to identify biomarkers that can be used for early diagnosis of Schistosoma japonicum infection. In this study, a label-free proteomics method was performed to observe the alteration of proteins before infection, 1 and 6 weeks after infection, and 5 and 7 weeks after treatment. A total of 10 proteins derived from S. japonicum and 242 host-derived proteins were identified and quantified as significantly changed. Temporal analysis was carried out to further analyze potential biomarkers with coherent changes during infection and treatment. The results revealed biological process changes in serum proteins compared to infection and treatment groups, which implicated receptor-mediated endocytosis, inflammatory response, and acute-phase response such as mannan-binding lectin serine peptidase 1, immunoglobulin, and collagen. These findings offer guidance for the in-depth analysis of potential biomarkers of schistosomiasis, host protein, and early diagnosis of S. japonicum and its pathogenesis. Data are available via ProteomeXchange with identifier PXD029635.


The Analyst ◽  
2021 ◽  
Author(s):  
Andrea Barucci ◽  
Cristiano D'Andrea ◽  
Edoardo Farnesi ◽  
Martina Banchelli ◽  
Chiara Amicucci ◽  
...  

We implement a machine learning classification of similar proteins by PCA mixed with multipeak fitting on SERS spectra for effective discrimination based on valid biological differences.


Biosensors ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 91 ◽  
Author(s):  
Natalia E. Markina ◽  
Alexey V. Markin

This report is dedicated to development of surface-enhanced Raman spectroscopy (SERS) based analysis protocol for detection of antibiotics in urine. The key step of the protocol is the pretreatment of urine before the detection to minimize background signal. The pretreatment includes extraction of intrinsic urine components using aluminum hydroxide gel (AHG) and further pH adjusting of the purified sample. The protocol was tested by detection of a single antibiotic in artificially spiked samples of real urine. Five antibiotics of cephalosporin class (cefazolin, cefoperazone, cefotaxime, ceftriaxone, and cefuroxime) were used for testing. SERS measurements were performed using a portable Raman spectrometer with 638 nm excitation wavelength and silver nanoparticles as SERS substrate. The calibration curves of four antibiotics (cefuroxime is the exception) cover the concentrations required for detection in patient’s urine during therapy (25/100‒500 μg/mL). Random error of the analysis (RSD < 20%) and limits of quantification (20‒90 μg/mL) for these antibiotics demonstrate the applicability of the protocol for reliable quantitative detection during therapeutic drug monitoring. The detection of cefuroxime using the protocol is not sensitive enough, allowing only for qualitative detection. Additionally, time stability and batch-to-batch reproducibility of AHG were studied and negative influence of the pretreatment protocol and its limitations were estimated and discussed.


2006 ◽  
Vol 915 ◽  
Author(s):  
Vindhya Kundura ◽  
Sudhaprasanna Kumar Padigi ◽  
Shalini Prasad

AbstractRapid, multiplexed, high throughput detection of proteins is essential for the development of protein biomarkers as sensors. Electrical alignment and detection is a non-invasive, label free technique for rapid identification of bimolecular. We present here a micro fabricated platform based detector for rapidly identifying protein biomarkers present in atherosclerotic plaque for rapid clinical diagnosis of arterial obstruction. This is achieved by electrical assembly of polystyrene beads functionalized with specific antibody receptors (anti-C-reactive protein) .The electrical assembly is achieved using electrophoresis. The polystyrene “bridge” micro structure formed due to electrical assembly aids in the amplification of the antibody-antigen binding event. Antigen (C-reactive protein) at nanogram / ml concentration was detected when binding of the antigen resulted in an amplification of the electrical signal that was measured from the base microelectrode platform. This technique is a demonstration of the application of microscale technology (electrodes) in nanoscale (protein) electrical detection.


2015 ◽  
Vol 112 (32) ◽  
pp. E4354-E4363 ◽  
Author(s):  
Fatih Inci ◽  
Chiara Filippini ◽  
Murat Baday ◽  
Mehmet Ozgun Ozen ◽  
Semih Calamak ◽  
...  

Recent advances in biosensing technologies present great potential for medical diagnostics, thus improving clinical decisions. However, creating a label-free general sensing platform capable of detecting multiple biotargets in various clinical specimens over a wide dynamic range, without lengthy sample-processing steps, remains a considerable challenge. In practice, these barriers prevent broad applications in clinics and at patients’ homes. Here, we demonstrate the nanoplasmonic electrical field-enhanced resonating device (NE2RD), which addresses all these impediments on a single platform. The NE2RD employs an immunodetection assay to capture biotargets, and precisely measures spectral color changes by their wavelength and extinction intensity shifts in nanoparticles without prior sample labeling or preprocessing. We present through multiple examples, a label-free, quantitative, portable, multitarget platform by rapidly detecting various protein biomarkers, drugs, protein allergens, bacteria, eukaryotic cells, and distinct viruses. The linear dynamic range of NE2RD is five orders of magnitude broader than ELISA, with a sensitivity down to 400 fg/mL This range and sensitivity are achieved by self-assembling gold nanoparticles to generate hot spots on a 3D-oriented substrate for ultrasensitive measurements. We demonstrate that this precise platform handles multiple clinical samples such as whole blood, serum, and saliva without sample preprocessing under diverse conditions of temperature, pH, and ionic strength. The NE2RD’s broad dynamic range, detection limit, and portability integrated with a disposable fluidic chip have broad applications, potentially enabling the transition toward precision medicine at the point-of-care or primary care settings and at patients’ homes.


10.1186/gm498 ◽  
2013 ◽  
Vol 5 (10) ◽  
pp. 95 ◽  
Author(s):  
Chantal A Mutsaers ◽  
Douglas J Lamont ◽  
Gillian Hunter ◽  
Thomas M Wishart ◽  
Thomas H Gillingwater

2006 ◽  
Vol 926 ◽  
Author(s):  
Shalini Prasad ◽  
Thomas Barrett ◽  
John Carruthers

AbstractWe describe highly sensitive, non–invasive, label-free, electrical detection of protein biomarkers using nanoporous alumina membrane based electrochemical conductance based devices. The principle of operation of these sensors are based on electrochemical conductance varitions associated with the binding of antibody-antigen complexes to a metallic substrate.In these devices distinct pore clusters are selectively surface functionalized with specific antibodies, that are in turn are incorporated into micro scale arrays. Protein markers were routinely detected at nanomolar concentrations. This opens the potential for developing highly sensitive and selective biomarker detection assays in clinically relevant samples for diagnosis of complex disease state like vulnerable coronary plaque rupture that results in poor post surgical outcomes and other complex diseases.


Sign in / Sign up

Export Citation Format

Share Document