scholarly journals Hydrogel-based hybridization chain reaction (HCR) for detection of urinary exosomal miRNAs as a diagnostic tool of prostate cancer

2021 ◽  
pp. 113504
Author(s):  
Junbeom Kim ◽  
Ji Sung Shim ◽  
Bo Hoon Han ◽  
Hye Jin Kim ◽  
Jaesung Park ◽  
...  
Molecules ◽  
2019 ◽  
Vol 24 (5) ◽  
pp. 831 ◽  
Author(s):  
Yujie Sun ◽  
Chenyun Wang ◽  
Hong Zhang ◽  
Yulin Zhang ◽  
Guojun Zhang

The early diagnosis of prostate cancer is very vital for the improvement of patient survival chances. The content of prostate specific antigen (PSA) in serum is closely related to the status of the prostate cancer. We report a fluorescence bioassay, capable of detecting PSA in a non-enzymatic and label-free manner. PSA gives rise to the structural change of a hairpin, consequently triggering the hybridization chain reaction and forming a long-nicked double-helix, which is not adsorbed by graphene oxide. GelRed, as the signal indicator, then binds with dsDNA molecule, thereby producing the fluorescence. The established bioassay has the merits of simple operation, favorable cost-to-benefit ratios, good stability, and specificity. Moreover, the detection limit of this assay is as low as 10 pg/mL, and the linearity range is wide—from 100 pg/mL to 200 ng/mL. At the same time, this bioassay can realize the detection of PSA in biological samples (human serum, saliva, and urine). Therefore, the bioassay provides a potential means for the early diagnosis of prostate cancer.


2006 ◽  
Vol 175 (4S) ◽  
pp. 485-486
Author(s):  
Sabarinath B. Nair ◽  
Christodoulos Pipinikas ◽  
Roger Kirby ◽  
Nick Carter ◽  
Christiane Fenske

2019 ◽  
Vol 43 (24) ◽  
pp. 9458-9465
Author(s):  
Xiquan Yue ◽  
Lihong Su ◽  
Xu Chen ◽  
Junfeng Liu ◽  
Longpo Zheng ◽  
...  

The strategy is based on small molecule-mediated hybridization chain reaction.


2021 ◽  
Vol 1147 ◽  
pp. 170-177
Author(s):  
Pingping Ji ◽  
Guimei Han ◽  
Yan Huang ◽  
Hongxin Jiang ◽  
Qiwen Zhou ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Feng Li ◽  
Wenting Yu ◽  
Jiaojiao Zhang ◽  
Yuhang Dong ◽  
Xiaohui Ding ◽  
...  

AbstractDNA nanostructures have been demonstrated as promising carriers for gene delivery. In the carrier design, spatiotemporally programmable assembly of DNA under nanoconfinement is important but has proven highly challenging due to the complexity–scalability–error of DNA. Herein, a DNA nanotechnology-based strategy via the cascade hybridization chain reaction (HCR) of DNA hairpins in polymeric nanoframework has been developed to achieve spatiotemporally programmable assembly of DNA under nanoconfinement for precise siRNA delivery. The nanoframework is prepared via precipitation polymerization with Acrydite-DNA as cross-linker. The potential energy stored in the loops of DNA hairpins can overcome the steric effect in the nanoframework, which can help initiate cascade HCR of DNA hairpins and achieve efficient siRNA loading. The designer tethering sequence between DNA and RNA guarantees a triphosadenine triggered siRNA release specifically in cellular cytoplasm. Nanoframework provides stability and ease of functionalization, which helps address the complexity–scalability–error of DNA. It is exemplified that the phenylboronate installation on nanoframework enhanced cellular uptake and smoothed the lysosomal escape. Cellular results show that the siRNA loaded nanoframework down-regulated the levels of relevant mRNA and protein. In vivo experiments show significant therapeutic efficacy of using siPLK1 loaded nanoframework to suppress tumor growth.


Sign in / Sign up

Export Citation Format

Share Document