Modeling drying kinetics of Jacaranda mimosifolia seeds with variable effective diffusivity via diffusion model

2021 ◽  
Vol 205 ◽  
pp. 234-245
Author(s):  
Marcos P. Felizardo ◽  
Giovanni R.F. Merlo ◽  
Gustavo D. Maia
Author(s):  
Elisabete P. de Sousa ◽  
Rossana M. F. de Figueirêdo ◽  
Josivanda P. Gomes ◽  
Alexandre J. de M. Queiroz ◽  
Deise S. de Castro ◽  
...  

ABSTRACT The aim of this work was to study the drying kinetics of pequi pulp by convective drying at different conditions of temperature (50, 60, 70 and 80 °C) and thickness (0.5, 1.0 and 1.5 cm) at the air speed of 1.0 m s-1, with no addition of adjuvant. The experimental data of pequi pulp drying kinetics were used to plot drying curves and fitted to the models: Midilli, Page, Henderson & Pabis and Newton. Effective diffusivity was calculated using the Fick’s diffusion model for a flat plate. It was found that, with increasing thickness, the drying time increased and, with increasing temperature, the drying time was reduced. The Midilli model showed the best fit to the experimental data of pequi pulp drying at all temperatures and thicknesses, presenting higher coefficients of determination (R2), indicating that this model satisfactorily represents the pequi pulp drying phenomenon. There was a trend of increase in the effective diffusivity with the increase in pulp layer thickness and temperature.


Author(s):  
Douglas R. Reis ◽  
Fabrício B. Brum ◽  
Eduardo J. O. Soares ◽  
Jessiana R. Magalhães ◽  
Fabrício S. Silva ◽  
...  

ABSTRACT Several types of seeds have been initially used in the food industry due to the great potential that vegetable proteins have. Baru is a fruit commonly found in the Cerrado biome, having a high nutritional value. This paper aimed to determine and analyze the drying kinetics of whole and defatted baru almond flours at different temperatures. The flour resulting from almond milling was defatted using petroleum ether. The drying processes were performed at temperatures of 40, 50 and 60 ºC. The mathematical models of Page, Henderson and Pabis, Midilli & Kucuk, Thompson and Approximation of Diffusion were fitted to the experimental data. The results showed a noticeable effect of air temperature on the drying kinetics of whole and defatted baru almond flours. According to the statistical parameters of analysis, the models Midilli & Kucuk and Page were the ones with the best fits to the experimental data. The effective diffusivity values found ranged from 8.02 × 10–10 to 19.90 × 10–10 m2 s-1 and for the activation energy were 22.39 and 39.37 KJ mol-1 for whole and defatted almonds, respectively.


2020 ◽  
Vol 2 (2) ◽  
pp. 225-239
Author(s):  
Craig Walker ◽  
Andrew Cole ◽  
Elsa Antunes ◽  
Madoc Sheehan

Algae-based products have applications in the food and pharmaceutical industries, bioremediation of waste streams and biofuel production. Drying has been recognised to constitute the largest energy cost in algae processing, yet there is limited data or modelling characterising the drying kinetics of macroalgae. This research modelled the equilibrium moisture content of two macroalgae species, Ulva ohnoi, a saltwater alga and Oedogonium intermedium, a freshwater alga. The Guggenheim–Anderson–de Boer model was found to best represent experimental equilibrium moisture contents. Drying rate curves obtained under both convective and radiative conditions were fitted to an analytical solution of Fick’s second law, including the modelled equilibrium moisture values. Effective diffusivity values for the two species are presented.


2015 ◽  
Vol 39 (3) ◽  
pp. 291-300 ◽  
Author(s):  
Daniele Penteado Rosa ◽  
Denis Cantú-Lozano ◽  
Guadalupe Luna-Solano ◽  
Tiago Carregari Polachini ◽  
Javier Telis-Romero

Drying of orange seeds representing waste products from juice processing was studied in the temperatures of 40, 50, 60 and 70 °C and drying velocities of 0.6, 1.0 and 1.4 m/s. Experimental drying kinetics of orange seeds were obtained using a convective air forced dryer. Three thin-layer models: Page model, Lewis model, and the Henderson-Pabis model and the diffusive model were used to predict the drying curves. The Henderson-Pabis and the diffusive models show the best fitting performance and statistical evaluations. Moreover, the temperature dependence on the effective diffusivity followed an Arrhenius relationship, and the activation energies ranging from 16.174 to 16.842 kJ/mol


2020 ◽  
Vol 28 ◽  
pp. 535-548
Author(s):  
Gabriela Saldanha Soares ◽  
Scarlet Neves Tuchtenhagen ◽  
Luiz Antonio de Almeida Pinto ◽  
Carlos Alberto Severo Felipe

The aim of this work was to obtain adsorption isotherms and to study the drying kinetics of persian clover (Trifolium resupinatum L.) and arrowleaf clover (Trifolium vesiculosum) seeds, in addition, fitting the experimental data by the predicted models of the literature. The equilibrium moisture content and the moisture adsorption behavior were found by isotherms curves at 40, 45 and 50 ºC, and the Peleg model was the most suitable. The drying kinetics was determined by thin layer assays in an air parallel flow dryer at all three temperatures. In addition, it was demonstrated the predominance of the falling drying rate period for the two species of seeds, and the critical moisture content values were approximately of 0.20 and 0.25 gwater gdry matter-1 for persian clover and arrowleaf clover seeds, respectively. The effective diffusivity values were estimated in ranges of values of 3.61×10-11 – 6.81×10-11 m² s-1 for persian clover and 6.76×10-11 – 1.15×10-10 m²s-1 for arrowleaf clover seeds and the temperature effect was expressed by an Arrhenius relation. Thus, drying kinetics confirmed the greater difficulty in moisture removal from the arrowleaf clover seeds, compared to the persian clover seeds drying, in agreement with the results obtained through adsorption isotherms.


2020 ◽  
Vol 28 ◽  
pp. 460-476
Author(s):  
Rodrigo Victor Moreira ◽  
Jefferson Luiz Gomes Correa ◽  
Ednilton Tavares de Andrade ◽  
Roney Alves da Rocha

The mathematical modelling is fundamental for the understanding of the related processes the drying, that influences the quality of the coffee drink. The objective of this study was to evaluate the influence of different relative humidity of the drying air after partial drying on drying kinetics of peeled coffees. Coffee fruits were harvested in the cherry stage and processed by wet, resulting in the portion of peeled coffee. Eleven treatments of drying were accomplished, being nine results of the combination of three dry bulb temperatures and three dew point temperatures, more two treatments without the control of the dew point temperatures. The control of the relative humidity by the dew point temperature was made after the grains reached the partial drying. Among the studied models, those of Diffusion Approximation and Modified Midilli were the most adequate for describing the drying process of the first and second part of drying respectively. The effective diffusivity coefficient of water in coffee grains ranged from 0.81 x 10-11 to 1.84 x 10-11 m² .s-1 during the first part of the drying and ranged from 1.49 x 10-11 to 3.29 x 10-11 m² .s-1 during the second part of the drying, increasing significantly with the reduction of the dew point temperature and increase of the dry bulb temperature.


Author(s):  
Kricelle M. Deamici ◽  
Lucas C. de Oliveira ◽  
Gabriela S. da Rosa ◽  
Elizangela G. de Oliveira

ABSTRACT The aim of this study was to obtain the equilibrium moisture content of grape (variety ‘Tannat’) pomace through desorption isotherms, to evaluate the drying kinetics, determine the coefficient of effective diffusivity and physico-chemically characterize the grape pomace and the product obtained after drying. The desorption isotherms were determined at 50, 60 and 70 ºC and the experimental data were fitted using the GAB model (Gugghenheim, Anderson and de Boer). Drying was evaluated using a 22 factorial experimental design with three center points and effective diffusivity was obtained through the diffusion model of Fick’s second law. The grape pomace was characterized regarding the contents of moisture, protein, carbohydrates, lipids, ash and dietary crude fiber. The obtained isotherms showed sigmoid shape and the experimental data fitted well to the GAB model. The drying curves showed only a decreasing rate period. The effective diffusivity values were within the range for organic materials. Dry grape pomace showed high contents of protein and fiber and can be used in the development of new products, in order to increase the nutritional content and add value to this byproduct.


Computation ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 141
Author(s):  
Vasileios Chasiotis ◽  
Dimitrios Tzempelikos ◽  
Andronikos Filios

In the present case study, a moisture diffusion model is developed to simulate the drying kinetics of Lavandula x allardii leaves for non-stationary convective drying regimes. Increasing temperature profiles are applied over the drying duration and the influence of temperature advancing rates on the moisture removal and the drying rate is investigated. The model assumes a one-dimensional moisture transfer under transient conditions, which occurs from the leaf center to the surface by liquid diffusion due to the concentration gradient developed by the surface water evaporation caused by the difference of water vapor partial pressure between the drying medium and the leaf surface. A numerical solution of Fick’s 2nd law is obtained by an in-house code using the finite volume method, including shrinkage and a variable temperature-dependent effective moisture diffusion coefficient. The numerical results have been validated against experimental data for selected cases using statistical indices and the predicted dehydration curves presented a good agreement for the higher temperature advancing rates. The examined modeling approach was found stable and can output, in a computationally efficient way, the temporal changes of moisture and drying rate. Thus, the present model could be used for engineering applications involving the design, optimization and development of drying equipment and drying schedules for the examined type of non-stationary drying patterns.


2020 ◽  
Vol 8 (10) ◽  
pp. 35-44
Author(s):  
Mamadou Lamine Coly ◽  
◽  
Mamadou Seck Gueye ◽  
Boucounta Mbaye ◽  
Waly Faye ◽  
...  

This work is part of a study for the conservation of fish products through solar drying. The grey seabream is dried after a pre-treatment of 16 hours in a salt brine under two conditions: on a rack in open air and in a solar dryer. The tests were carried out under average irradiance conditions of 592.76 W/m², an average ambient temperature of 30°C and an average air temperature in the dryer of 50°C. The results obtained, allowed us to reach a final humidity of 32% from an initial humidity of 65% in a wet basis. The drying was processed in 15 hours, (i.e. two days in the dryer) and 24 hours (i.e. three days in the open air). The modeling of the drying kinetics of the grey sea bream is carried out from empirical or semi-empirical models taken from the previous works. Several criteria were defined for the choice of the two-term model as being the one that can describe in the best way, the drying of the fish in both conditions. The effective diffusivity was determined using Ficks diffusive model whose solution is given by Crank, so that the logarithm of the reduced moisture allows us to find effective diffusivities for fish of 9.88823 10-7 (m²/s) and 1.72534 10-6 (m²/s) for open-air and in dryer drying respectively.


2014 ◽  
Vol 783-786 ◽  
pp. 950-955 ◽  
Author(s):  
Xin Pang ◽  
Fateh Fazeli ◽  
Michael Attard ◽  
Chao Shi

This study aims to develop novel experimental procedure that quantifies response of AHSSs with different microstructures, deformation status, and strength levels to hydrogen. The capacity for trapped hydrogen, kinetics of hydrogen absorption and loss, and hydrogen mobility are measured and analyzed by permeation tests. The experimental findings are discussed in terms of microstructural features for an interstitial free (IF) and a dual phase (DP) steels. Further, the density of trap sites and its effect on effective diffusivity of hydrogen in the steel are analyzed by means of a diffusion model.


Sign in / Sign up

Export Citation Format

Share Document