Larvicidal Activity and In Silico Studies of Cinnamic Acid Derivatives Against Aedes aegypti (Diptera: Culicidae)

2021 ◽  
pp. 116299
Author(s):  
Saraliny Bezerra França ◽  
Luana Carine Barros de Lima ◽  
Cristhyan Rychard da Silva Cunha ◽  
Daniela Santos Anunciação ◽  
Edeildo Ferreira da Silva-Júnior ◽  
...  
Molecules ◽  
2020 ◽  
Vol 26 (1) ◽  
pp. 61
Author(s):  
Marianna O. Araújo ◽  
Yunierkis Pérez-Castillo ◽  
Louise H. G. Oliveira ◽  
Fabíola C. Nunes ◽  
Damião P. de Sousa

The mosquito Aedes aegypti transmits the virus that causes dengue, yellow fever, Zika and Chikungunya viruses, and in several regions of the planet represents a vector of great clinical importance. In terms of mortality and morbidity, infections caused by Ae. aegypti are among the most serious arthropod transmitted viral diseases. The present study investigated the larvicidal potential of seventeen cinnamic acid derivatives against fourth stage Ae. aegypti larvae. The larvicide assays were performed using larval mortality rates to determine lethal concentration (LC50). Compounds containing the medium alkyl chains butyl cinnamate (7) and pentyl cinnamate (8) presented excellent larvicidal activity with LC50 values of around 0.21–0.17 mM, respectively. While among the derivatives with aryl substituents, the best LC50 result was 0.55 mM for benzyl cinnamate (13). The tested derivatives were natural compounds and in pharmacology and antiparasitic studies, many have been evaluated using biological models for environmental and toxicological safety. Molecular modeling analyses suggest that the larvicidal activity of these compounds might be due to a multi-target mechanism of action involving inhibition of a carbonic anhydrase (CA), a histone deacetylase (HDAC2), and two sodium-dependent cation-chloride co-transporters (CCC2 e CCC3).


2020 ◽  
Vol 17 (3) ◽  
pp. 338-347
Author(s):  
Ajay Chauhan ◽  
Ajmer S. Grewal ◽  
Deepti Pandita ◽  
Viney Lather

Background: Peroxisome proliferator-activated receptor (PPAR) δ is expressed universally in the entire tissues, particularly in those concerned with the lipid metabolism. PPAR δ stimulation alters body’s energy fuel preference to fat from glucose and shows up as an emerging pharmacological target for the treatment of metabolic disorders. Methods: A new series of cinnamic acid derivatives was synthesized and evaluated for the antidiabetic and antiinflammatory activities in the animal models followed by in silico docking studies to determine the binding interactions for the best fit conformations in the binding site of the PPARδ protein. Results: Amongst the synthesized molecules, compound 3 showed higher antidiabetic activity in oral glucose tolerance test and compound 1 showed higher antiinflammatory activity in the carrageenan induced rat paw oedema method. The in vivo study results were supported by the similar in silico molecular docking results. Most of the synthesized derivatives showed drug likeness as depicted via Lipinski’s rule of 5. Conclusion: These molecules can serve as the early hit molecules for the discovery of safe, effective and bioavailable PPARδ agonists for the potential treatment of various metabolic disorders.</P>


2018 ◽  
pp. 362-374
Author(s):  
Harlyson L. Carvalho ◽  
Andréia L. de Amorim ◽  
Inana F. Araújo ◽  
Bianca L. B. Marino ◽  
David E. Q. Jimenez ◽  
...  

2020 ◽  
Vol 28 (2) ◽  
pp. 213-237 ◽  
Author(s):  
Andrea Mastinu ◽  
Giovanni Ribaudo ◽  
Alberto Ongaro ◽  
Sara Anna Bonini ◽  
Maurizio Memo ◽  
...  

: Cannabidiol (CBD) is a non-psychotropic phytocannabinoid which represents one of the constituents of the “phytocomplex” of Cannabis sativa. This natural compound is attracting growing interest since when CBD-based remedies and commercial products were marketed. This review aims to exhaustively address the extractive and analytical approaches that have been developed for the isolation and quantification of CBD. Recent updates on cutting-edge technologies were critically examined in terms of yield, sensitivity, flexibility and performances in general, and are reviewed alongside original representative results. As an add-on to currently available contributions in the literature, the evolution of the novel, efficient synthetic approaches for the preparation of CBD, a procedure which is appealing for the pharmaceutical industry, is also discussed. Moreover, with the increasing interest on the therapeutic potential of CBD and the limited understanding of the undergoing biochemical pathways, the reader will be updated about recent in silico studies on the molecular interactions of CBD towards several different targets attempting to fill this gap. Computational data retrieved from the literature have been integrated with novel in silico experiments, critically discussed to provide a comprehensive and updated overview on the undebatable potential of CBD and its therapeutic profile.


2020 ◽  
Vol 26 ◽  
Author(s):  
John Chen ◽  
Andrew Martin ◽  
Warren H. Finlay

Background: Many drugs are delivered intranasally for local or systemic effect, typically in the form of droplets or aerosols. Because of the high cost of in vivo studies, drug developers and researchers often turn to in vitro or in silico testing when first evaluating the behavior and properties of intranasal drug delivery devices and formulations. Recent advances in manufacturing and computer technologies have allowed for increasingly realistic and sophisticated in vitro and in silico reconstructions of the human nasal airways. Objective: To perform a summary of advances in understanding of intranasal drug delivery based on recent in vitro and in silico studies. Conclusion: The turbinates are a common target for local drug delivery applications, and while nasal sprays are able to reach this region, there is currently no broad consensus across the in vitro and in silico literature concerning optimal parameters for device design, formulation properties and patient technique which would maximize turbinate deposition. Nebulizers are able to more easily target the turbinates, but come with the disadvantage of significant lung deposition. Targeting of the olfactory region of the nasal cavity has been explored for potential treatment of central nervous system conditions. Conventional intranasal devices, such as nasal sprays and nebulizers, deliver very little dose to the olfactory region. Recent progress in our understanding of intranasal delivery will be useful in the development of the next generation of intranasal drug delivery devices.


Sign in / Sign up

Export Citation Format

Share Document