Structural modification aimed for improving solubility of lead compounds in early phase drug discovery

2022 ◽  
pp. 116614
Author(s):  
Bhanuranjan Das ◽  
Anurag TK Baidya ◽  
Alen T Mathew ◽  
Ashok Kumar Yadav ◽  
Rajnish Kumar
2019 ◽  
Vol 22 (8) ◽  
pp. 509-520
Author(s):  
Cauê B. Scarim ◽  
Chung M. Chin

Background: In recent years, there has been an improvement in the in vitro and in vivo methodology for the screening of anti-chagasic compounds. Millions of compounds can now have their activity evaluated (in large compound libraries) by means of high throughput in vitro screening assays. Objective: Current approaches to drug discovery for Chagas disease. Method: This review article examines the contribution of these methodological advances in medicinal chemistry in the last four years, focusing on Trypanosoma cruzi infection, obtained from the PubMed, Web of Science, and Scopus databases. Results: Here, we have shown that the promise is increasing each year for more lead compounds for the development of a new drug against Chagas disease. Conclusion: There is increased optimism among those working with the objective to find new drug candidates for optimal treatments against Chagas disease.


2020 ◽  
Vol 23 (2) ◽  
pp. 111-118
Author(s):  
Zhiping Che ◽  
Jinming Yang ◽  
Di Sun ◽  
Yuee Tian ◽  
Shengming Liu ◽  
...  

Background: It is one of the effective ways for pesticide innovation to develop new insecticides from natural products as lead compounds. Quinine, the main alkaloid in the bark of cinchona tree as well as in plants in the same genus, is recognized as a safe and potent botanical insecticide to many insects. The structural modification of quinine into 9R-acyloxyquinine derivatives is a potential approach for the development of novel insecticides, which showed more toxicity than quinine. However, there are no reports on the insecticidal activity of 9Racyloxyquinine derivatives to control Mythimna separata. Methods: Endeavor to discover biorational natural products-based insecticides, 20 novel 9Racyloxyquinine derivatives were prepared and assessed for their insecticidal activity against M. separata in vivo by the leaf-dipping method at 1 mg/mL. Results: Among all the compounds, especially derivatives 5i, 5k and 5t exhibited the best insecticidal activity with final mortality rates of 50.0%, 57.1%, and 53.6%, respectively. Conclusion: Overall, a free 9-hydroxyl group is not a prerequisite for insecticidal activity and C9- substitution is well tolerated; modification of out-ring double-bond is acceptable, and hydrogenation of double-bond enhances insecticidal activity; Quinine ring is essential and open of it is not acceptable. These preliminary results will pave the way for further modification of quinine in the development of potential new insecticides.


2019 ◽  
Vol 19 (16) ◽  
pp. 1298-1368 ◽  
Author(s):  
Ankit Jain ◽  
Poonam Piplani

: Triazole is a valuable platform in medicinal chemistry, possessing assorted pharmacological properties, which could play a major role in the common mechanisms associated with various disorders like cancer, infections, inflammation, convulsions, oxidative stress and neurodegeneration. Structural modification of this scaffold could be helpful in the generation of new therapeutically useful agents. Although research endeavors are moving towards the growth of synthetic analogs of triazole, there is still a lot of scope to achieve drug discovery break-through in this area. Upcoming therapeutic prospective of this moiety has captured the attention of medicinal chemists to synthesize novel triazole derivatives. The authors amalgamated the chemistry, synthetic strategies and detailed pharmacological activities of the triazole nucleus in the present review. Information regarding the marketed triazole derivatives has also been incorporated. The objective of the review is to provide insights to designing and synthesizing novel triazole derivatives with advanced and unexplored pharmacological implications.


Author(s):  
Iván Beltran-Hortelano ◽  
Richard L. Atherton ◽  
Mercedes Rubio-Hernández ◽  
Julen Sanz-Serrano ◽  
Verónica Alcolea ◽  
...  

Author(s):  
Manisha Yadav ◽  
J. Satya Eswari

Background: Lipopeptides are potential microbial metabolites that are abandoned with broad spectrum biopharmaceutical properties ranging from antimicrobial, antiviral and anticancer, etc. Clinical studies are not much explored beyond the experimental methods to understand drug mechanisms on target proteins at the molecular level for large molecules. Due to the less available studies on potential target proteins of lipopeptide based drugs, their potential inhibitory role for more obvious treatment on disease have not been explored in the direction of lead optimization. However, Computational approaches need to be utilized to explore drug discovery aspects on lipopeptide based drugs, which are time saving and cost-effective techniques. Methods: Here a ligand-based drug discovery approach is coupled with reverse pharmacophore-mapping for the prediction of potential targets for antiviral (SARS-nCoV-2) and anticancer lipopeptides. Web-based servers PharmMapper and Swiss Target Prediction are used for the identification of target proteins for lipopeptides surfactin and iturin produced by Bacillus subtilis. Results: The studies have given the insight to treat the diseases with next-generation large molecule therapeutics. Results also indicate the affinity for Angiotensin-Converting Enzymes (ACE) and proteases as the potential viral targets for these categories of peptide therapeutics. A target protein for the Human Papilloma Virus (HPV) has also been mapped. Conclusion: The work will further help in exploring computer-aided drug designing of novel compounds with greater efficiency where the structure of the target proteins and lead compounds are known.  


Author(s):  
Kamatchi Sundara Saravanan ◽  
Selvam Arjunan ◽  
Selvaraj Kunjiappan ◽  
Parasuraman Pavadai ◽  
Lakshmi M. Sundar

2013 ◽  
Vol 15 (7) ◽  
pp. 764-788 ◽  
Author(s):  
Jabeena Khazir ◽  
Bilal Ahmad Mir ◽  
Shabir Ahmad Mir ◽  
Don Cowan

2007 ◽  
Vol 12 (7) ◽  
pp. 946-955 ◽  
Author(s):  
Nicholas L. Mills ◽  
Anang A. Shelat ◽  
R. Kiplin Guy

The lack of lead compounds that specifically recognize and manipulate the function of RNA molecules limits our ability to consider RNA targets valid for drug discovery. Herein is reported a high-throughput biochemical screen for inhibitors of RNA-protein interactions based on AlphaScreen technology that incorporates several layers of specificity measurements into the primary screen. This screen was used to analyze approximately 5500 compounds from a collection of bioactive small molecules to detect inhibitors of the HIV-1 Rev-RRE and BIV Tat-TAR interactions. This proof-of-concept screen validates the assay as one that accurately identifies hit molecules and determines the selectivity of those hits. ( Journal of Biomolecular Screening 2007: 946-955)


RSC Advances ◽  
2016 ◽  
Vol 6 (61) ◽  
pp. 56249-56259 ◽  
Author(s):  
Gonçalo C. Justino ◽  
Pedro F. Pinheiro ◽  
Alexandra P. S. Roseiro ◽  
Ana S. O. Knittel ◽  
João Gonçalves ◽  
...  

This study identifies novel camphor-derived compounds that bind the CCR5 receptor and can be used as lead compounds for drug discovery.


Sign in / Sign up

Export Citation Format

Share Document