Pyrrolopyrimidine inhibitors of DNA gyrase B (GyrB) and topoisomerase IV (ParE). Part I: Structure guided discovery and optimization of dual targeting agents with potent, broad-spectrum enzymatic activity

2013 ◽  
Vol 23 (5) ◽  
pp. 1529-1536 ◽  
Author(s):  
Leslie W. Tari ◽  
Michael Trzoss ◽  
Daniel C. Bensen ◽  
Xiaoming Li ◽  
Zhiyong Chen ◽  
...  
2016 ◽  
Vol 60 (8) ◽  
pp. 4830-4839 ◽  
Author(s):  
Christopher M. Tan ◽  
Charles J. Gill ◽  
Jin Wu ◽  
Nathalie Toussaint ◽  
Jingjun Yin ◽  
...  

ABSTRACTOxabicyclooctane-linked novel bacterial topoisomerase inhibitors (NBTIs) represent a new class of recently described antibacterial agents with broad-spectrum activity. NBTIs dually inhibit the clinically validated bacterial targets DNA gyrase and topoisomerase IV and have been shown to bind distinctly from known classes of antibacterial agents directed against these targets. Herein we report the molecular, cellular, andin vivocharacterization of AM-8722 as a representative N-alkylated-1,5-naphthyridone left-hand-side-substituted NBTI. Consistent with its mode of action, macromolecular labeling studies revealed a specific effect of AM-8722 to dose dependently inhibit bacterial DNA synthesis. AM-8722 displayed greater intrinsic enzymatic potency than levofloxacin versus both DNA gyrase and topoisomerase IV fromStaphylococcus aureusandEscherichia coliand displayed selectivity against human topoisomerase II. AM-8722 was rapidly bactericidal and exhibited whole-cell activity versus a range of Gram-negative and Gram-positive organisms, with no whole-cell potency shift due to the presence of DNA or human serum. Frequency-of-resistance studies demonstrated an acceptable rate of resistance emergencein vitroat concentrations 16- to 32-fold the MIC. AM-8722 displayed acceptable pharmacokinetic properties and was shown to be efficacious in mouse models of bacterial septicemia. Overall, AM-8722 is a selective and potent NBTI that displays broad-spectrum antimicrobial activityin vitroandin vivo.


2005 ◽  
Vol 49 (5) ◽  
pp. 1949-1956 ◽  
Author(s):  
Jacob Strahilevitz ◽  
David C. Hooper

ABSTRACT Quinolones that act equally against DNA gyrase and topoisomerase IV are a desirable modality to decrease the selection of resistant strains. We first determined by genetic and biochemical studies in Staphylococcus aureus that the primary target enzyme of WCK-1734, a new quinolone, was DNA gyrase. A single mutation in gyrase, but not topoisomerase IV, caused a two- to fourfold increase in the MIC. Studies with purified topoisomerase IV and gyrase from S. aureus also showed that gyrase was more sensitive than topoisomerase IV to WCK-1734 (50% inhibitory concentration, 1.25 and 2.5 to 5.0 μg/ml, respectively; 50% stimulation of cleavage complex formation, 0.62 and 2.5 to 5.0 μg/ml, respectively). To test the effect of balanced activity of quinolones against the two target enzymes, we measured the frequency of selection of mutants with ciprofloxacin (which targets topoisomerase IV) and WCK-1734 alone and in combination. With the combination of ciprofloxacin and WCK-1734, each at its MIC, the ratio of frequency of mutants selected was significantly lower than that with each drug alone at two times their respective MICs. We further characterized resistant strains selected with the combination of ciprofloxacin and WCK-1734 and found evidence to suggest the existence of novel mutational mechanisms for low-level quinolone resistance. By use of a combination of differentially targeting quinolones, this study provides novel data in direct support of the paradigm for dual targeting of quinolone action and reduced development of resistance.


2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S642-S643
Author(s):  
Pan Chan ◽  
Karen Ingraham ◽  
Sharon Min ◽  
Nicole Scangarella-Oman ◽  
Steve Rittenhouse ◽  
...  

Abstract Background Gepotidacin (GEP) is a novel triazaacenaphthylene bacterial type II topoisomerase inhibitor targeting both bacterial DNA gyrase and topoisomerase IV by a different mechanism from fluoroquinolone antibiotics. Although in vitro frequency of resistance to GEP in Neisseria gonorrhoeae (NG) is low, during a phase 2 trial, clinical resistance to gepotidacin in NG emerged in a subset of fluoroquinolone-resistant NG isolates that contained a pre-existing ParC D86N mutation by introduction of a new GyrA A92T mutation. The objective of this study was to evaluate the role of GyrA A92T & Parc D86N mutations in resistance to GEP. Methods We utilized the high frequency of natural transformation to introduce GyrA A92T and ParC D86N mutations, individually and in combination, into NG isolates either with GyrA S91F D95G mutations or with wild type (WT) GyrA by selection on ciprofloxacin (CIP) or GEP to generate isogenic strains for susceptibility evaluation. Results Results are summarized in enclosed table. Overall, GyrA A92T and ParC D86N mutations alone did not confer a significant (>4-fold) increase in GEP MIC; whereas together they gave >16-fold increases in GEP MIC. Importantly, quinolone target mutations (GyrA S91F D95G and ParC D86N) together showed no significant effect on the GEP MIC; while they gave >1000-fold increase in CIP MIC. As expected, GyrA A92T and ParC D86N mutations alone or together in WT GyrA background had no significant effect on CIP susceptibility. Susceptibility of isogenic NG strains to gepotidacin and ciprofloxacin Conclusion Our results indicated that unlike fluoroquinolones that primarily target DNA gyrase in NG, there is no obvious primary target for GEP, supporting well-balanced dual targeting of DNA gyrase and topoisomerase IV by GEP in NG. Though, the pre-existing ParC D86N mutation is a potential risk marker for clinical resistance development, as this mutation compromises dual targeting of GEP, our studies provide mechanistic insight for appropriate clinical dose selection to potentially suppress further resistance development in this subset of clinical isolates. Disclosures Pan Chan, PhD, GlaxoSmithKline (Employee, Shareholder) Karen Ingraham, MS, GlaxoSmithKline (Employee, Shareholder) Sharon Min, MS, GlaxoSmithKline (Employee, Shareholder) Nicole Scangarella-Oman, MS, GlaxoSmithKline plc. (Employee, Shareholder) Steve Rittenhouse, PhD, GlaxoSmithKline (Employee, Shareholder) Jianzhong Huang, PhD, GlaxoSmithKline (Employee, Shareholder)


Antibiotics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1506
Author(s):  
Béla Kocsis ◽  
Dániel Gulyás ◽  
Dóra Szabó

Novel antimicrobial agents, approved for clinical use in past years, represent potential treatment options for various infections. In this review, we summarize the most important medical and microbiological features of three recently approved fluoroquinolones, namely delafloxacin, finafloxacin, and zabofloxacin. Delafloxacin possesses an anionic chemical structure, and represents broad-spectrum activity, as it targets both bacterial DNA gyrase and topoisomerase IV enzymes of gram-positive and gram-negative bacteria with equal affinity. Its molecular surface is larger than that of other fluoroquinolones, and it has enhanced antibacterial efficacy in acidic environments. Delafloxacin has been approved to treat acute bacterial skin and skin-structure infections, as well as community-acquired bacterial pneumonia. Finafloxacin has a zwitterionic chemical structure, and targets both DNA gyrase and topoisomerase IV enzymes. This enables a broad antibacterial spectrum; however, finafloxacin has so far only been approved in ear-drops to treat bacterial otitis externa. Zabofloxacin is also a broad-spectrum fluoroquinolone agent, and was first approved in South Korea to treat acute bacterial exacerbation of chronic obstructive pulmonary disease. The introduction of these novel fluoroquinolones into daily practice extends the possible indications of antibiotics into different bacterial infections, and provides treatment options in difficult-to-treat infections. However, some reports of delafloxacin resistance have already appeared, thus underlining the importance of the prudent use of antibiotics.


2007 ◽  
Vol 51 (7) ◽  
pp. 2445-2453 ◽  
Author(s):  
Jijun Cheng ◽  
Jane A. Thanassi ◽  
Christy L. Thoma ◽  
Barton J. Bradbury ◽  
Milind Deshpande ◽  
...  

ABSTRACT Heteroaryl isothiazolones (HITZs) are antibacterial agents that display excellent in vitro activity against Staphylococcus aureus. We recently identified a series of these compounds that show potent bactericidal activities against methicillin-resistant Staphylococcus aureus (MRSA). We report here the results of in vitro resistance studies that reveal potential underlying mechanisms of action. HITZs selected gyrA mutations exclusively in first-step mutants of wild-type S. aureus, indicating that in contrast to the case with most quinolones, DNA gyrase is the primary target. The compounds displayed low mutation frequencies (10−9 to 10−10) at concentrations close to the MICs and maintained low MICs (≤0.016 μg/ml) against mutants with single mutations in either gyrA or grlA (parC). These data suggested that HITZs possess significant inhibitory activities against target enzymes, DNA gyrase and topoisomerase IV. This dual-target inhibition was supported by low 50% inhibitory concentrations against topoisomerase IV as measured in a decatenation activity assay and against DNA gyrase as measured in a supercoiling activity assay. Good antibacterial activities (≤1 μg/ml) against staphylococcal gyrA grlA double mutants, as well as low frequencies (10−9 to 10−10) of selection of still higher-level mutants, also suggested that HITZs remained active against mutant enzymes. We further demonstrated that HITZs exhibit good inhibition of both S. aureus mutant enzymes and thus continue to possess a novel dual-targeting mode of action against these mutant strains. In stepwise acquisition of mutations, HITZs selected quinolone resistance determining region mutations gyrA(Ser84Leu), grlA(Ser80Phe), grlA(Ala116Val), and gyrA(Glu88Lys) sequentially, suggesting that the corresponding amino acids are key amino acids involved in the binding of HITZs to topoisomerases. The overall profile of these compounds suggests the potential utility of HITZs in combating infections caused by S. aureus, including multidrug-resistant MRSA.


2000 ◽  
Vol 44 (11) ◽  
pp. 3112-3117 ◽  
Author(s):  
Victoria J. Heaton ◽  
Jane E. Ambler ◽  
L. Mark Fisher

ABSTRACT We investigated the roles of DNA gyrase and topoisomerase IV in determining the susceptibility of Streptococcus pneumoniaeto gemifloxacin, a novel fluoroquinolone which is under development as an antipneumococcal drug. Gemifloxacin displayed potent activity against S. pneumoniae 7785 (MIC, 0.06 μg/ml) compared with ciprofloxacin (MIC, 1 to 2 μg/ml). Complementary genetic and biochemical approaches revealed the following. (i) The gemifloxacin MICs for isogenic 7785 mutants bearing either parC orgyrA quinolone resistance mutations were marginally higher than wild type at 0.12 to 0.25 μg/ml, whereas the presence of both mutations increased the MIC to 0.5 to 1 μg/ml. These data suggest that both gyrase and topoisomerase IV contribute significantly as gemifloxacin targets in vivo. (ii) Gemifloxacin selected first-stepgyrA mutants of S. pneumoniae 7785 (gemifloxacin MICs, 0.25 μg/ml) encoding Ser-81 to Phe or Tyr, or Glu-85 to Lys mutations. These mutants were cross resistant to sparfloxacin (which targets gyrase) but not to ciprofloxacin (which targets topoisomerase IV). Second-step mutants (gemifloxacin MICs, 1 μg/ml) exhibited an alteration in parC resulting in changes of ParC hot spot Ser-79 to Phe or Tyr. Thus, gyrase appears to be the preferential in vivo target. (iii) Gemifloxacin was at least 10- to 20-fold more effective than ciprofloxacin in stabilizing a cleavable complex (the cytotoxic lesion) with either S. pneumoniaegyrase or topoisomerase IV enzyme in vitro. These data suggest that gemifloxacin is an enhanced affinity fluoroquinolone that acts against gyrase and topoisomerase IV in S. pneumoniae, with gyrase the preferred in vivo target. The marked potency of gemifloxacin against wild type and quinolone-resistant mutants may accrue from greater stabilization of cleavable complexes with the target enzymes.


2017 ◽  
Vol 61 (5) ◽  
Author(s):  
Cédric Charrier ◽  
Anne-Marie Salisbury ◽  
Victoria J. Savage ◽  
Thomas Duffy ◽  
Emmanuel Moyo ◽  
...  

ABSTRACT The novel bacterial topoisomerase inhibitor class is an investigational type of antibacterial inhibitor of DNA gyrase and topoisomerase IV that does not have cross-resistance with the quinolones. Here, we report the evaluation of the in vitro properties of a new series of this type of small molecule. Exemplar compounds selectively and potently inhibited the catalytic activities of Escherichia coli DNA gyrase and topoisomerase IV but did not block the DNA breakage-reunion step. Compounds showed broad-spectrum inhibitory activity against a wide range of Gram-positive and Gram-negative pathogens, including biodefence microorganisms and Mycobacterium tuberculosis. No cross-resistance with fluoroquinolone-resistant Staphylococcus aureus and E. coli isolates was observed. Measured MIC90 values were 4 and 8 μg/ml against a panel of contemporary multidrug-resistant isolates of Acinetobacter baumannii and E. coli, respectively. In addition, representative compounds exhibited greater antibacterial potency than the quinolones against obligate anaerobic species. Spontaneous mutation rates were low, with frequencies of resistance typically <10−8 against E. coli and A. baumannii at concentrations equivalent to 4-fold the MIC. Compound-resistant E. coli mutants that were isolated following serial passage were characterized by whole-genome sequencing and carried a single Arg38Leu amino acid substitution in the GyrA subunit of DNA gyrase. Preliminary in vitro safety data indicate that the series shows a promising therapeutic index and potential for low human ether-a-go-go-related gene (hERG) inhibition (50% inhibitory concentration [IC50], >100 μM). In summary, the compounds' distinct mechanism of action relative to the fluoroquinolones, whole-cell potency, low potential for resistance development, and favorable in vitro safety profile warrant their continued investigation as potential broad-spectrum antibacterial agents.


Sign in / Sign up

Export Citation Format

Share Document