scholarly journals Small Molecule Approaches to Treat Autoimmune and Inflammatory Diseases (Part III): Targeting Cytokines and Cytokine Receptor Complexes

Author(s):  
Jiamin Zheng ◽  
Dongdong Chen ◽  
Jie Xu ◽  
Xiao Ding ◽  
Yao Wu ◽  
...  
2020 ◽  
Vol 21 (21) ◽  
pp. 8090
Author(s):  
Roya Rasaei ◽  
Neha Sarodaya ◽  
Kye-Seong Kim ◽  
Suresh Ramakrishna ◽  
Seok-Ho Hong

Ubiquitination and deubiquitination play a fundamental role in the signaling pathways associated with innate and adaptive immune responses. Macrophages are key sentinels for the host defense, triggering antiviral and inflammatory responses against various invading pathogens. Macrophages recognize the genetic material of these pathogens as pathogen-associated molecular patterns (PAMPs) and danger-associated molecular patterns (DAMPs) through the activation of its pattern recognition receptors (PRRs), initiating the cascade of immune signaling, which leads to the production of pro- and anti-inflammatory cytokines that initiates the appropriate immune response. Macrophage-mediated immune response is highly regulated and tightly controlled by the ubiquitin system since its abnormal activation or dysregulation may result in the severe pathogenesis of numerous inflammatory and autoimmune diseases. Deubiquitinating enzymes (DUBs) play a crucial role in reversing the ubiquitination and controlling the magnitude of the immune response. During infection, pathogens manipulate the host defense system by regulating DUBs to obtain nutrients and increase proliferation. Indeed, the regulation of DUBs by small molecule inhibitors has been proposed as an excellent way to control aberrant activation of immune signaling molecules. This review is focused on the complex role of DUBs in macrophage-mediated immune response, exploring the potential use of DUBs as therapeutic targets in autoimmune and inflammatory diseases by virtue of small molecule DUB inhibitors.


2021 ◽  
Vol 11 (5) ◽  
pp. 336
Author(s):  
Mohammed Ghiboub ◽  
Ahmed M. I. Elfiky ◽  
Menno P. J. de Winther ◽  
Nicola R. Harker ◽  
David F. Tough ◽  
...  

Histone deacetylases (HDACs) and bromodomain-containing proteins (BCPs) play a key role in chromatin remodeling. Based on their ability to regulate inducible gene expression in the context of inflammation and cancer, HDACs and BCPs have been the focus of drug discovery efforts, and numerous small-molecule inhibitors have been developed. However, dose-limiting toxicities of the first generation of inhibitors, which typically target multiple HDACs or BCPs, have limited translation to the clinic. Over the last decade, an increasing effort has been dedicated to designing class-, isoform-, or domain-specific HDAC or BCP inhibitors, as well as developing strategies for cell-specific targeted drug delivery. Selective inhibition of the epigenetic modulators is helping to elucidate the functions of individual epigenetic proteins and has the potential to yield better and safer therapeutic strategies. In accordance with this idea, several in vitro and in vivo studies have reported the ability of more selective HDAC/BCP inhibitors to recapitulate the beneficial effects of pan-inhibitors with less unwanted adverse events. In this review, we summarize the most recent advances with these strategies, discussing advantages and limitations of these approaches as well as some therapeutic perspectives, focusing on autoimmune and inflammatory diseases.


Biomedicines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 791
Author(s):  
Sung-Min Park ◽  
Tae-Il Kang ◽  
Jae-Seon So

The spliced form of X-box binding protein 1 (XBP1s) is an active transcription factor that plays a vital role in the unfolded protein response (UPR). Under endoplasmic reticulum (ER) stress, unspliced Xbp1 mRNA is cleaved by the activated stress sensor IRE1α and converted to the mature form encoding spliced XBP1 (XBP1s). Translated XBP1s migrates to the nucleus and regulates the transcriptional programs of UPR target genes encoding ER molecular chaperones, folding enzymes, and ER-associated protein degradation (ERAD) components to decrease ER stress. Moreover, studies have shown that XBP1s regulates the transcription of diverse genes that are involved in lipid and glucose metabolism and immune responses. Therefore, XBP1s has been considered an important therapeutic target in studying various diseases, including cancer, diabetes, and autoimmune and inflammatory diseases. XBP1s is involved in several unique mechanisms to regulate the transcription of different target genes by interacting with other proteins to modulate their activity. Although recent studies discovered numerous target genes of XBP1s via genome-wide analyses, how XBP1s regulates their transcription remains unclear. This review discusses the roles of XBP1s in target genes transcriptional regulation. More in-depth knowledge of XBP1s target genes and transcriptional regulatory mechanisms in the future will help develop new therapeutic targets for each disease.


Sign in / Sign up

Export Citation Format

Share Document