scholarly journals Biophysical Analysis of Gene Regulation Pathways Controlled by Bacterial Non-Coding RNAs

2010 ◽  
Vol 98 (3) ◽  
pp. 198a
Author(s):  
Nilshad Salim ◽  
Dandan Li ◽  
Martha Faner ◽  
Andrew L. Feig
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Marco Passamonti ◽  
Marco Calderone ◽  
Manuel Delpero ◽  
Federico Plazzi

2008 ◽  
Vol 389 (4) ◽  
pp. 323-331 ◽  
Author(s):  
David Umlauf ◽  
Peter Fraser ◽  
Takashi Nagano

Abstract Transcriptome studies have uncovered a plethora of non-coding RNAs (ncRNA) in mammals. Most originate within intergenic regions of the genome and recent evidence indicates that some are involved in many different pathways that ultimately act on genome architecture and gene expression. In this review, we discuss the role of well-characterized long ncRNAs in gene regulation pointing to their similarities, but also their differences. We will attempt to highlight a paradoxical situation in which transcription is needed to repress entire chromosomal domains possibly through the action of ncRNAs that create nuclear environments refractory to transcription.


Genes ◽  
2018 ◽  
Vol 9 (9) ◽  
pp. 459 ◽  
Author(s):  
Priyanka Borah ◽  
Antara Das ◽  
Matthew Milner ◽  
Arif Ali ◽  
Alison Bentley ◽  
...  

Long non-coding RNA (lncRNA) research in plants has recently gained momentum taking cues from studies in animals systems. The availability of next-generation sequencing has enabled genome-wide identification of lncRNA in several plant species. Some lncRNAs are inhibitors of microRNA expression and have a function known as target mimicry with the sequestered transcript known as an endogenous target mimic (eTM). The lncRNAs identified to date show diverse mechanisms of gene regulation, most of which remain poorly understood. In this review, we discuss the role of identified putative lncRNAs that may act as eTMs for nutrient-responsive microRNAs (miRNAs) in plants. If functionally validated, these putative lncRNAs would enhance current understanding of the role of lncRNAs in nutrient homeostasis in plants.


2021 ◽  
Author(s):  
Morten T. Jarlstad Olesen ◽  
Lasse S. Kristensen

Abstract Gene expression in eukaryotic cells is a complex process encompassing several layers of regulation at the transcriptional and post-transcriptional levels. At the post-transcriptional level, microRNAs (miRs) are key regulatory molecules that function by binding directly to mRNAs. This generally leads to less efficient translation of the target mRNAs. More recently, an additional layer of gene regulation has been discovered, as other molecules, including circular RNAs (circRNAs), may bind to miRs and thereby function as sponges or decoys resulting in increased expression of the corresponding miR target genes. The circRNAs constitute a large class of mainly non-coding RNAs, which have been extensively studied in recent years, in particular in the cancer research field where many circRNAs have been proposed to function as miR sponges. Here, we briefly describe miR-mediated gene regulation and the extra layer of regulation that is imposed by the circRNAs. We describe techniques and methodologies that are commonly used to investigate potential miR sponging properties of circRNAs and discuss major pitfalls and controversies within this relatively new research field.


2021 ◽  
Author(s):  
Rucha P.

MicroRNAs (miRNAs) are a category of highly conserved tiny non-coding RNAs that play a role in post-transcriptional gene regulation. Numerous studies have shown the role of dysregulated miRNA in a variety of illnesses, including human cancer. MiRNA is dysregulated by a variety of processes, including dysregulation of miRNA synthesis, aberrant miRNA transcription, dysregulated epigenetic modification, and chromosomal abnormalities. MiRNAs that are overexpressed have been shown to influence cancer's hallmarks. Recent research has shown miRNA's potential as a therapeutic target and biomarker. In this review, we discussed the synthesis and regulation of miRNA, as well as its dysregulation in human cancer and other disorders, as well as some of the therapeutic applications of miRNA.


ExRNA ◽  
2019 ◽  
Vol 1 (1) ◽  
Author(s):  
Xihan Li ◽  
Xiaoping Zou

Abstract MicroRNAs (miRNAs) are a number of small non-coding RNAs playing a regulatory part in gene expression. Many virus-encoded miRNAs have been found, which manifests that viruses as well apply the basic pattern of gene regulation, however, mostly in viruses transcribed from double-stranded DNA genomes. It is still in dispute if RNA viruses could encode miRNAs because the excision of miRNA might result in the cleavage of viral RNA genome. We will focus on the miRNAs encoded by RNA virus and discuss their potential role in viral replication cycle and host cells.


2015 ◽  
Vol 16 (2) ◽  
pp. 3251-3266 ◽  
Author(s):  
Victoria Villegas ◽  
Peter Zaphiropoulos

2017 ◽  
Vol 12 (11) ◽  
pp. S2104-S2105
Author(s):  
G. Stewart ◽  
K. Enfield ◽  
V. Martinez ◽  
A. Sage ◽  
E. Marshall ◽  
...  

2013 ◽  
Vol 49 (1) ◽  
pp. 16-32 ◽  
Author(s):  
Veena S. Patil ◽  
Rui Zhou ◽  
Tariq M. Rana

2012 ◽  
Vol 40 (4) ◽  
pp. 759-761 ◽  
Author(s):  
Natalia Gromak

Most human genes transcribed by RNA Pol II (polymerase II) contain short exons separated by long tracts of non-coding intronic sequences. In addition to their role in generating proteomic diversity through the process of alternative splicing, intronic sequences host many ncRNAs (non-coding RNAs), involved in various gene regulation processes. miRNAs (microRNAs) are short ncRNAs that mediate either mRNA transcript translational repression and/or degradation. Between 50 and 80% of miRNAs are encoded within introns of host mRNA genes. This observation suggests that there is co-regulation between the miRNA biogenesis and pre-mRNA splicing processes. The present review summarizes current advances in this field and discusses possible roles for intronic co-transcriptional cleavage events in the regulation of human gene expression.


Sign in / Sign up

Export Citation Format

Share Document