scholarly journals Mechanical Feedback in Protein Recruitment to Membranes

2021 ◽  
Vol 120 (3) ◽  
pp. 145a
Author(s):  
Yiben Fu ◽  
Wade F. Zeno ◽  
Jeanne C. Stachowiak ◽  
Margaret E. Johnson
Genes ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 819
Author(s):  
Olga Soriano ◽  
Marta Alcón-Pérez ◽  
Miguel Vicente-Manzanares ◽  
Esther Castellano

Ras and Rho proteins are GTP-regulated molecular switches that control multiple signaling pathways in eukaryotic cells. Ras was among the first identified oncogenes, and it appears mutated in many forms of human cancer. It mainly promotes proliferation and survival through the MAPK pathway and the PI3K/AKT pathways, respectively. However, the myriad proteins close to the plasma membrane that activate or inhibit Ras make it a major regulator of many apparently unrelated pathways. On the other hand, Rho is weakly oncogenic by itself, but it critically regulates microfilament dynamics; that is, actin polymerization, disassembly and contraction. Polymerization is driven mainly by the Arp2/3 complex and formins, whereas contraction depends on myosin mini-filament assembly and activity. These two pathways intersect at numerous points: from Ras-dependent triggering of Rho activators, some of which act through PI3K, to mechanical feedback driven by actomyosin action. Here, we describe the main points of connection between the Ras and Rho pathways as they coordinately drive oncogenic transformation. We emphasize the biochemical crosstalk that drives actomyosin contraction driven by Ras in a Rho-dependent manner. We also describe possible routes of mechanical feedback through which myosin II activation may control Ras/Rho activation.


2021 ◽  
Author(s):  
Takayuki Miki ◽  
Masahiro Hashimoto ◽  
Taichi Nakai ◽  
Hisakazu Mihara

A series of guide-tags that can control the enrichment of client proteins into artificial scaffolds constituted by the self-assembling Y15 peptide tag facilitates the analysis of protein–protein interactions in living cells.


2020 ◽  
Author(s):  
Dean E. Natwick ◽  
Sean R. Collins

AbstractOptogenetic protein dimerization systems are powerful tools to investigate the biochemical networks that cells use to make decisions and coordinate their activities. These tools, including the improved Light-Inducible Dimer (iLID) system, offer the ability to selectively recruit components to subcellular locations, such as micron-scale regions of the plasma membrane. In this way, the role of individual proteins within signaling networks can be examined with high spatiotemporal resolution. Currently, consistent recruitment is limited by heterogeneous optogenetic component expression, and spatial precision is diminished by protein diffusion, especially over long timescales. Here, we address these challenges within the iLID system with alternative membrane anchoring domains and fusion configurations. Using live cell imaging and mathematical modeling, we demonstrate that the anchoring strategy affects both component expression and diffusion, which in turn impact recruitment strength, kinetics, and spatial dynamics. Compared to the commonly used C-terminal iLID fusion, fusion proteins with large N-terminal anchors show stronger local recruitment, slower diffusion of recruited components, and efficient recruitment over wider gene expression ranges. We also define guidelines for component expression regimes for optimal recruitment for both cell-wide and subcellular recruitment strategies. Our findings highlight key sources of imprecision within light-inducible dimer systems and provide tools that allow greater control of subcellular protein localization across diverse cell biological applications.SignificanceOptogenetic light-inducible dimer systems, such as iLID, offer the ability to examine cellular signaling networks on second timescales and micrometer spatial scales. Confined light stimulation can recruit proteins to subcellular regions of the plasma membrane, and local signaling effects can be observed. Here, we report alternative iLID fusion proteins that display stronger and more spatially confined membrane recruitment. We also define optogenetic component expression regimes for optimal recruitment and show that slow-diffusing iLID proteins allow more robust recruitment in cell populations with heterogenous expression. These tools should improve the spatiotemporal control and reproducibility of optogenetic protein recruitment to the plasma membrane.


Giant ◽  
2021 ◽  
pp. 100089
Author(s):  
Qi Xiao ◽  
Naomi Rivera-Martinez ◽  
Calvin J. Raab ◽  
Jessica G. Bermudez ◽  
Matthew C. Good ◽  
...  

2018 ◽  
Author(s):  
Ojan Khatib Damavandi ◽  
David K. Lubensky

Tissue growth is a fundamental aspect of development and is intrinsically noisy. Stochasticity has important implications for morphogenesis, precise control of organ size, and regulation of tissue composition and heterogeneity. Yet, the basic statistical properties of growing tissues, particularly when growth induces mechanical stresses that can in turn affect growth rates, have received little attention. Here, we study the noisy growth of elastic sheets subject to mechanical feedback. Considering both isotropic and anisotropic growth, we find that the density-density correlation function shows power law scaling. We also consider the dynamics of marked, neutral clones of cells. We find that the areas (but not the shapes) of two clones are always statistically independent, even when they are adjacent. For anisotropic growth, we show that clone size variance scales like the average area squared and that the mode amplitudes characterizing clone shape show a slow 1/n decay, where n is the mode index. This is in stark contrast to the isotropic case, where relative variations in clone size and shape vanish at long times. The high variability in clone statistics observed in anisotropic growth is due to the presence of two soft modes—growth modes that generate no stress. Our results lay the groundwork for more in-depth explorations of the properties of noisy tissue growth in specific biological contexts.


2018 ◽  
Vol 59 (4) ◽  
pp. 581-606 ◽  
Author(s):  
A. ERLICH ◽  
R. HOWELL ◽  
A. GORIELY ◽  
R. CHIRAT ◽  
D. E. MOULTON

Mollusc seashells grow through the local deposition and calcification of material at the shell opening by a soft and thin organ called the mantle. Through this process, a huge variety of shell structures are formed. Previous models have shown that these structural patterns can largely be understood by examining the mechanical interaction between the deformable mantle and the rigid shell aperture to which it adheres. In this paper we extend this modelling framework in two distinct directions. For one, we incorporate a mechanical feedback in the growth of the mollusc. Second, we develop an initial framework to couple the two primary and orthogonal modes of pattern formation in shells, which are termed antimarginal and commarginal ornamentation. In both cases we examine the change in shell morphology that occurs due to the different mechanical influences and evaluate the hypotheses in light of the fossil record.


Sign in / Sign up

Export Citation Format

Share Document