local deposition
Recently Published Documents


TOTAL DOCUMENTS

84
(FIVE YEARS 16)

H-INDEX

16
(FIVE YEARS 2)

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
S. Peter Kim ◽  
Daniel Juneau ◽  
Claire Cohalan ◽  
Shirin A. Enger

Abstract Background Multiple post-treatment dosimetry methods are currently under investigation for Yttrium-90 ($$^{90}\hbox {Y}$$ 90 Y ) radioembolization. Within each methodology, a variety of dosimetric inputs exists that affect the final dose estimates. Understanding their effects is essential to facilitating proper dose analysis and crucial in the eventual standardization of radioembolization dosimetry. The purpose of this study is to investigate the dose differences due to different self-calibrations and mass density assignments in the non-compartmental and local deposition methods. A practical mean correction method was introduced that permits dosimetry in images where the quality is compromised by patient motion and partial volume effects. Methods Twenty-one patients underwent $$^{90}\hbox {Y}$$ 90 Y radioembolization and were imaged with SPECT/CT. Five different self-calibrations (FOV, Body, OAR, Liverlung, and Liver) were implemented and dosimetrically compared. The non-compartmental and local deposition method were used to perform dosimetry based on either nominal- or CT calibration-based mass densities. A mean correction method was derived assuming homogeneous densities. Cumulative dose volume histograms, linear regressions, boxplots, and Bland Altman plots were utilized for analysis. Results Up to 270% weighted dose difference was found between self-calibrations with mean dose differences up to 50 Gy in the liver and 23 Gy in the lungs. Between the local deposition and non-compartmental methods, the liver and lung had dose differences within 0.71 Gy and 20 Gy, respectively. The local deposition method’s nominal and CT calibration-based mass density implementations dosimetric metrics were within 1.4% in the liver and 24% in the lungs. The mean lung doses calculated with the CT method were shown to be inflated. The mean correction method demonstrated that the corrected mean doses were greater by up to $$\sim 5$$ ∼ 5 Gy in the liver and lower by up to $$\sim 12$$ ∼ 12 Gy in the lungs. Conclusions The OAR calibration may be utilized as a potentially more accurate and precise self-calibration. The non-compartmental method was found more comparable to the local deposition method in organs that were more homogeneous in mass densities. Due to the potential for inflated lung mean doses, the non-compartmental and local deposition method implemented with nominal mass densities is recommended for more consistent dosimetric results. If patient motion and partial volume effects are present in the liver, our practical correction method will calculate more representative doses in images suboptimal for dosimetry.


Antioxidants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1109
Author(s):  
Eleonora Casula ◽  
Maria Letizia Manca ◽  
Matteo Perra ◽  
Jose Luis Pedraz ◽  
Tania Belen Lopez-Mendez ◽  
...  

A total green nanotechnological nasal spray has been manufactured and proposed as an alternative treatment of rhinitis and rhinosinusitis. It was obtained by combining the strengthening effect of liposomes on barrier function, the hydrating and lubricating properties of sodium hyaluronan and the anti-inflammatory and antioxidant activities of the extract of Zingiber officinalis. To this purpose, the extract was loaded in special phospholipid vesicles immobilized with hyaluronic acid (hyalurosomes), which were further enriched with glycerol in the water phase. Liposomes and glycerosomes were prepared as well and used as reference. Vesicles were oligolamellar and multicompartment, as confirmed by cryogenic transmission electron microscopy (cryo-TEM) observation, small in size (~140 nm) and negatively charged (~−23 mV). Spray characteristics were evaluated by using the Spraytec® and instant images, from which the plume angle was measured. The range of the droplet size distribution and the narrow spray angle obtained suggest a good nebulization and a possible local deposition in the nasal cavity. In vitro studies performed by using human keratinocytes confirmed the high biocompatibility of vesicles and their ability to effectively counteract oxidative damage on cells induced by hydrogen peroxide. The overall collected data suggest that our vesicles are suitable as nasal spray.


2021 ◽  
Author(s):  
Qirui Zhong ◽  
Nick Schutgens ◽  
Guido van der Werf

<p>Biomass burning (BB) injects aerosols into the atmosphere and can thereby affect the earth climate and human health. Yet the modeling of BB aerosols exhibits significant bias. Here we present a comprehensive evaluation of AeroCom model simulations with satellite observations to understand such uncertainties. A total of 59 model runs using 17 models from three AeroCcom Phase III experiments (i.e., Biomass Burning emissions, CTRL2016, and CTRL2019 experiment) and 14 satellite products are involved. AOD (aerosol optical depth) at 550 nm wavelength during the fire season over three typical fire regions (Amazon, South Hemisphere Africa, and Boreal North America, or AMAZ, SHAF, and BONA) is the focus of our study, although we also consider AE and SSA from POLDER.</p><p>The 14 satellite products are shown to have quite substantial differences from AERONET observation. But we show that such differences have little impact on the model evaluation which is mainly affected by modeling bias. Through the comparison with POLDER observation, we found the modeled AOD are biased by -93% ~ 174% with most models showing significant underestimations even for the most recent modeling experiment (i.e., CTRL19). SHAF is among the three regions with the strongest underestimation in general. By scaling up the input emissions, such negative bias would be significantly reduced, which, however, has little impact on the day-to-day correlation between models and observations.</p><p>On top of the satellite-based model evaluation, we interpret the model diversity from the aspect of aerosol emissions, lifetime, and MEC (mass extinction coefficient), which are further linked with specific parameters in models. These three parameters cause similar levels of AOD diversity, which is quite different from the modeled aerosols during non-fire season when the contribution of lifetime is predominant. During the fire season, diversity caused by lifetime is strongly affected by local deposition; as a matter of fact, models tend to do quite poorly in simulating precipitation strength. Modeled MECs show significant correlations with aerosol wet-growth (which is known to be challenging to models) and AE (Angstrom Exponent) for some involved models. Comparisons with POLDER observed AE suggests some models tend to underestimate AE and thus MEC, which might be responsible for the overall AOD underestimation in certain models. Additionally, we show that model AOD biases correlate with satellite observed formaldehyde columns, suggesting SOA formation may be insufficiently captured by models.</p>


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Ronnie N. Glud ◽  
Peter Berg ◽  
Bo Thamdrup ◽  
Morten Larsen ◽  
Heather A. Stewart ◽  
...  

AbstractThe deepest part of the global ocean, hadal trenches, are considered to act as depocenters for organic material. Relatively high microbial activity has been demonstrated in the deepest sections of some hadal trenches, but the deposition dynamics are thought to be spatially and temporally variable. Here, we explore sediment characteristics and in-situ benthic oxygen uptake along two trenches with contrasting surface primary productivity: the Kermadec and Atacama trenches. We find that benthic oxygen consumption varies by a factor of about 10 between hadal sites but is in all cases intensified relative to adjacent abyssal plains. The benthic oxygen uptake of the two trench regions reflects the difference in surface production, whereas variations within each trench are modulated by local deposition dynamics. Respiratory activity correlates with the sedimentary inventories of organic carbon and phytodetrital material. We argue that hadal trenches represent deep sea hotspots for early diagenesis and are more diverse and dynamic environments than previously recognized.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lore Santoro ◽  
L. Pitalot ◽  
D. Trauchessec ◽  
E. Mora-Ramirez ◽  
P. O. Kotzki ◽  
...  

Abstract Background The aim of this study was to compare a commercial dosimetry workstation (PLANET® Dose) and the dosimetry approach (GE Dosimetry Toolkit® and OLINDA/EXM® V1.0) currently used in our department for quantification of the absorbed dose (AD) to organs at risk after peptide receptor radionuclide therapy with [177Lu]Lu-DOTA-TATE. Methods An evaluation on phantom was performed to determine the SPECT calibration factor variations over time and to compare the Time Integrated Activity Coefficients (TIACs) obtained with the two approaches. Then, dosimetry was carried out with the two tools in 21 patients with neuroendocrine tumours after the first and second injection of 7.2 ± 0.2 GBq of [177Lu]Lu-DOTA-TATE (40 dosimetry analyses with each software). SPECT/CT images were acquired at 4 h, 24 h, 72 h and 192 h post-injection and were reconstructed using the Xeleris software (General Electric). The liver, spleen and kidneys masses and TIACs were determined using Dosimetry Toolkit® (DTK) and PLANET® Dose. The ADs were calculated using OLINDA/EXM® V1.0 and the Local Deposition Method (LDM) or Dose voxel-Kernel convolution (DK) on PLANET® Dose. Results With the phantom, the 3D calibration factors showed a slight variation (0.8% and 3.3%) over time, and TIACs of 225.19 h and 217.52 h were obtained with DTK and PLANET® Dose, respectively. In patients, the root mean square deviation value was 8.9% for the organ masses, 8.1% for the TIACs, and 9.1% and 7.8% for the ADs calculated with LDM and DK, respectively. The Lin’s concordance correlation coefficient was 0.99 and the Bland–Altman plot analysis estimated that the AD value difference between methods ranged from − 0.75 to 0.49 Gy, from − 0.20 to 0.64 Gy, and from − 0.43 to 1.03 Gy for 95% of the 40 liver, kidneys and spleen dosimetry analyses. The dosimetry method had a minor influence on AD differences compared with the image registration and organ segmentation steps. Conclusions The ADs to organs at risk obtained with the new workstation PLANET® Dose are concordant with those calculated with the currently used software and in agreement with the literature. These results validate the use of PLANET® Dose in clinical routine for patient dosimetry after targeted radiotherapy with [177Lu]Lu-DOTA-TATE.


2021 ◽  
Vol 239 ◽  
pp. 00015
Author(s):  
Larisa Sorokina ◽  
Roman Ryazanov ◽  
Yury Shaman ◽  
Egor Lebedev

In this paper, the features and main nuances of electrophoretic deposition of energetic nanoscale powder materials based on Al and CuOx were investigated and formulated. We have successfully demonstrated the advantage of using suspension non-stop ultrasonic mixing and horizontal electrode placement during deposition. The possibility of local deposition of energetic materials on an electrically conductive topological pattern was shown. The influence of the mass of the deposited material on the behavior of the wave combustion process of a locally formed energetic material was investigated. This study provides guidance for the multiobjective optimization and increasing the reproducibility of the local electrophoretic deposition process of energetic materials. The results indicate that Al-CuOx mixture can be integrated into microenergy systems as a material with excellent specific energy characteristics and high combustion rate.


2020 ◽  
Vol 12 (22) ◽  
pp. 3793
Author(s):  
Angelika Humbert ◽  
Ludwig Schröder ◽  
Timm Schultz ◽  
Ralf Müller ◽  
Niklas Neckel ◽  
...  

Surface melt, driven by atmospheric temperatures and albedo, is a strong contribution of mass loss of the Greenland Ice Sheet. In the past, black carbon, algae and other light-absorbing impurities were suggested to govern albedo in Greenland’s ablation zone. Here we combine optical (MODIS/Sentinel-2) and radar (Sentinel-1) remote sensing data with airborne radar and laser scanner data, and engage firn modelling to identify the governing factors leading to dark glacier surfaces in Northeast Greenland. After the drainage of supraglacial lakes, the former lake ground is a clean surface represented by a high reflectance in Sentinel-2 data and aerial photography. These bright spots move with the ice flow and darken by more than 20% over only two years. In contrast, sites further inland do not exhibit this effect. This finding suggests that local deposition of dust, rather than black carbon or cryoconite formation, is the governing factor of albedo of fast-moving outlet glaciers. This is in agreement with a previous field study in the area which finds the mineralogical composition and grain size of the dust comparable with that of the surrounding soils.


2020 ◽  
Author(s):  
Lore Santoro ◽  
Laurine Pitalot ◽  
Dorian Trauchessec ◽  
Erick Mora-Ramirez ◽  
Pierre-Olivier Kotzki ◽  
...  

Abstract Background: The aim of this study was to compare a commercial dosimetry workstation (PLANET®Dose) and the dosimetry approach (GE Dosimetry Toolkit® and OLINDA/EXM® V1.0) currently used in our department for quantification of the absorbed dose (AD) to organs at risk after peptide receptor radionuclide therapy with [177Lu]Lu-DOTA-TATE.Methods: An evaluation on phantom was performed to determine the SPECT calibration factor variations over time and to compare the Time Integrated Activity Coefficients (TIACs) obtained with the two approaches. Then, dosimetry was carried out with the two tools in 21 patients with neuroendocrine tumours after the first and second injection of 7.2 ± 0.2 GBq of [177Lu]Lu-DOTA-TATE (40 dosimetry analyses with each software). SPECT/CT images were acquired at 4h, 24h, 72h and 192h post-injection and were reconstructed using the Xeleris software (General Electric). The liver, spleen and kidneys masses and TIACs were determined using Dosimetry Toolkit® (DTK) and PLANET®Dose. The ADs were calculated using OLINDA/EXM® V1.0 and the Local Deposition Method (LDM) or Dose voxel-Kernel convolution (DK) on PLANET®Dose.Results: With the phantom, the 3D calibration factors showed a slight variation (0.8% and 3.3%) over time, and TIACs of 225.19h and 217.52h were obtained with DTK and PLANETâDose, respectively. In patients, the root mean square deviation value was 8.9% for the organ masses, 8.1% for the TIACs, and 9.1% and 7.8% for the ADs calculated with LDM and DK, respectively. The Lin’s concordance correlation coefficient was 0.99 and the Bland-Altman plot analysis estimated that the AD value difference between methods ranged from -0.75 Gy to 0.49 Gy, from -0.20 Gy to 0.64 Gy, and from -0.43 to 1.03 Gy for 95% of the 40 liver, kidneys and spleen dosimetry analyses. The dosimetry method had a minor influence on AD differences compared with the image registration and organ segmentation steps.Conclusions: The ADs to organs at risk obtained with the new workstation PLANET®Dose are concordant with those calculated with the currently used software and in agreement with the literature. These results validate the use of PLANET®Dose in clinical routine for patient dosimetry after targeted radiotherapy with [177Lu]Lu-DOTA-TATE.


2020 ◽  
Author(s):  
Lore Santoro ◽  
Laurine Pitalot ◽  
Dorian Trauchessec ◽  
Erick Mora-Ramirez ◽  
Pierre-Olivier Kotzki ◽  
...  

Abstract Background: The aim of this study was to compare a commercial dosimetry workstation (PLANET®Dose) and the dosimetry approach (GE Dosimetry Toolkit® and OLINDA/EXM® V1.0) currently used in our department for quantification of the absorbed dose (AD) to organs at risk after peptide receptor radionuclide therapy with [177Lu]Lu-DOTA-TATE.Methods: An evaluation on phantom was performed to determine the SPECT calibration factor variations over time and to compare the Time Integrated Activity Coefficients (TIACs) obtained with the two approaches. Then, dosimetry was carried out with the two tools in 21 patients with neuroendocrine tumours after the first and second injection of 7.2 ± 0.2 GBq of [177Lu]Lu-DOTA-TATE (40 dosimetry analyses with each software). SPECT/CT images were acquired at 4h, 24h, 72h and 192h post-injection and were reconstructed using the Xeleris software (General Electric). The liver, spleen and kidneys masses and TIACs were calculated using Dosimetry Toolkit® (DTK) and PLANET®Dose. The ADs were calculated using OLINDA/EXM® V1.0 and the Local Deposition Method (LDM) or Dose voxel-Kernel convolution (DK) on PLANET®Dose.Results: With the phantom, the 3D calibration factors showed a slight variation (0.8% and 3.3%) over time, and TIACs of 225.19h and 217.52h were obtained with DTK and PLANET®Dose, respectively. In patients, the root mean square deviation value was 8.9% for the organ masses, 8.1% for the TIACs, and 9.1 and 7.8% for the ADs calculated with LDM and DK, respectively. The Lin’s concordance correlation coefficient was 0.99 and the Bland-Altman plot analysis estimated that the AD value difference between methods ranged from -0.75 Gy to 0.49 Gy, from -0.20 Gy to 0.64 Gy, and from -0.43 to 1.03 Gy for 95% of the 40 liver, kidneys and spleen dosimetry analyses. The dosimetry method had a minor influence on AD differences compared with the image registration and organ segmentation steps. Conclusions: The ADs to organs at risk obtained with the new workstation PLANET®Dose are concordant with those calculated with the currently used software and in agreement with the literature. These results validate the use of PLANET®Dose in clinical routine for patient dosimetry after targeted radiotherapy with [177Lu]Lu-DOTA-TATE.


Sign in / Sign up

Export Citation Format

Share Document