Conditioned medium from Endothelial Progenitor Cells promotes number of dopaminergic neurons and exerts neuroprotection in cultured ventral mesencephalic neuronal progenitor cells

2019 ◽  
Vol 1720 ◽  
pp. 146330 ◽  
Author(s):  
Stefano Di Santo ◽  
Stefanie Seiler ◽  
Angélique D. Ducray ◽  
Hans Rudolf Widmer
2020 ◽  
Author(s):  
Aurelie Schwartzentruber ◽  
Camilla Boschian ◽  
Fernanda Martins Lopes ◽  
Monika A Myszczynska ◽  
Elizabeth J New ◽  
...  

AbstractBackground Mutations in parkin are the most common cause of early onset Parkinson’s disease. Parkin is an E3 ubiquitin ligase, functioning in mitophagy. Mitochondrial abnormalities are present in parkin mutant models. Patient derived neurons are a promising model in which to study pathogenic mechanisms and therapeutic targets. Here we generate induced neuronal progenitor cells from parkin mutant patient fibroblasts with a high dopaminergic neuron yield. We reveal changing mitochondrial phenotypes as neurons undergo a metabolic switch during differentiation. Methods Fibroblasts from 4 controls and 4 parkin mutant patients were transformed into induced neuronal progenitor cells and subsequently differentiated into dopaminergic neurons. Mitochondrial morphology, function and mitophagy were evaluated using live cell fluorescent imaging, cellular ATP and reactive oxygen species production quantification. Results Direct conversion of control and parkin mutant patient fibroblasts results in induced neuronal progenitor and their differentiation yields high percentage of dopaminergic neurons. We were able to observe changing mitochondrial phenotypes as neurons undergo a metabolic switch during differentiation. Our results show that when pre-neurons are glycolytic early in differentiation mitophagy is unimpaired by PRKN deficiency. However as neurons become oxidative phosphorylation dependent, mitophagy is severely impaired in the PRKN mutant patient neurons. These changes correlate with changes in mitochondrial function and morphology; resulting in lower neuron yield and altered neuronal morphology. Conclusions Induced neuronal progenitor cell conversion can produce a high yield of dopaminergic neurons. The mitochondrial phenotype, including mitophagy status, is highly dependent on the metabolic status of the cell. Only when neurons are oxidative phosphorylation reliant the extent of mitochondrial abnormalities are identified. These data provide insight into cell specific effects of PRKN mutations, in particular in relation to mitophagy dependent disease phenotypes and provide avenues for alternative therapeutic approaches.


Author(s):  
Sebastian F. Mause ◽  
Elisabeth Ritzel ◽  
Annika Deck ◽  
Felix Vogt ◽  
Elisa A. Liehn

Abstract Background Smooth muscle cells (SMCs) are the main driver of neointima formation and restenosis following vascular injury. In animal models, endothelial progenitor cells (EPCs) accelerate endothelial regeneration and reduce neointima formation after arterial injury; however, EPC-capture stents do not reduce target vessel failure compared with conventional stents. Here we examined the influence of EPCs on features of SMCs pivotal for their impact on injury-induced neointima formation including proliferation, migration, and phenotype switch. Methods and Results EPCs, their conditioned medium, and EPC-derived microparticles induced proliferation of SMCs while limiting their apoptosis. In transwell membrane experiments and scratch assays, EPCs stimulated migration of SMCs and accelerated their recovery from scratch-induced injury. Treatment of SMCs with an EPC-derived conditioned medium or microparticles triggered transformation of SMCs toward a synthetic phenotype. However, co-cultivation of EPCs and SMCs enabling direct cell–cell contacts preserved their original phenotype and protected from the transformative effect of SMC cholesterol loading. Adhesion of EPCs to SMCs was stimulated by SMC injury and reduced by blocking CXCR2 and CCR5. Interaction of EPCs with SMCs modulated their secretory products and synergistically increased the release of selected chemokines. Following carotid wire injury in athymic mice, injection of EPCs resulted not only in reduced neointima formation but also in altered cellular composition of the neointima with augmented accumulation of SMCs. Conclusion EPCs stimulate proliferation and migration of SMCs and increase their neointimal accumulation following vascular injury. Furthermore, EPCs context-dependently modify the SMC phenotype with protection from the transformative effect of cholesterol when a direct cell–cell contact is established.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Aurelie Schwartzentruber ◽  
Camilla Boschian ◽  
Fernanda Martins Lopes ◽  
Monika A. Myszczynska ◽  
Elizabeth J. New ◽  
...  

Abstract Mutations in PRKN are the most common cause of early onset Parkinson’s disease. Parkin is an E3 ubiquitin ligase, functioning in mitophagy. Mitochondrial abnormalities are present in PRKN mutant models. Patient derived neurons are a promising model in which to study pathogenic mechanisms and therapeutic targets. Here we generate induced neuronal progenitor cells from PRKN mutant patient fibroblasts with a high dopaminergic neuron yield. We reveal changing mitochondrial phenotypes as neurons undergo a metabolic switch during differentiation. Fibroblasts from 4 controls and 4 PRKN mutant patients were transformed into induced neuronal progenitor cells and subsequently differentiated into dopaminergic neurons. Mitochondrial morphology, function and mitophagy were evaluated using live cell fluorescent imaging, cellular ATP and reactive oxygen species production quantification. Direct conversion of control and PRKN mutant patient fibroblasts results in induced neuronal progenitor and their differentiation yields high percentage of dopaminergic neurons. We were able to observe changing mitochondrial phenotypes as neurons undergo a metabolic switch during differentiation. Our results show that when pre-neurons are glycolytic early in differentiation mitophagy is unimpaired by PRKN deficiency. However as neurons become oxidative phosphorylation dependent, mitophagy is severely impaired in the PRKN mutant patient neurons. These changes correlate with changes in mitochondrial function and morphology; resulting in lower neuron yield and altered neuronal morphology. Induced neuronal progenitor cell conversion can produce a high yield of dopaminergic neurons. The mitochondrial phenotype, including mitophagy status, is highly dependent on the metabolic status of the cell. Only when neurons are oxidative phosphorylation reliant the extent of mitochondrial abnormalities are identified. These data provide insight into cell specific effects of PRKN mutations, in particular in relation to mitophagy dependent disease phenotypes and provide avenues for alternative therapeutic approaches.


2021 ◽  
Vol 22 (9) ◽  
pp. 4694
Author(s):  
Diana Salikhova ◽  
Tatiana Bukharova ◽  
Elvira Cherkashova ◽  
Daria Namestnikova ◽  
Georgy Leonov ◽  
...  

Transplantation of various types of stem cells as a possible therapy for stroke has been tested for years, and the results are promising. Recent investigations have shown that the administration of the conditioned media obtained after stem cell cultivation can also be effective in the therapy of the central nervous system pathology (hypothesis of their paracrine action). The aim of this study was to evaluate the therapeutic effects of the conditioned medium of hiPSC-derived glial and neuronal progenitor cells in the rat middle cerebral artery occlusion model of the ischemic stroke. Secretory activity of the cultured neuronal and glial progenitor cells was evaluated by proteomic and immunosorbent-based approaches. Therapeutic effects were assessed by overall survival, neurologic deficit and infarct volume dynamics, as well as by the end-point values of the apoptosis- and inflammation-related gene expression levels, the extent of microglia/macrophage infiltration and the numbers of formed blood vessels in the affected area of the brain. As a result, 31% of the protein species discovered in glial progenitor cells-conditioned medium and 45% in neuronal progenitor cells-conditioned medium were cell type specific. The glial progenitor cell-conditioned media showed a higher content of neurotrophins (BDNF, GDNF, CNTF and NGF). We showed that intra-arterial administration of glial progenitor cells-conditioned medium promoted a faster decrease in neurological deficit compared to the control group, reduced microglia/macrophage infiltration, reduced expression of pro-apoptotic gene Bax and pro-inflammatory cytokine gene Tnf, increased expression of anti-inflammatory cytokine genes (Il4, Il10, Il13) and promoted the formation of blood vessels within the damaged area. None of these effects were exerted by the neuronal progenitor cell-conditioned media. The results indicate pronounced cytoprotective, anti-inflammatory and angiogenic properties of soluble factors secreted by glial progenitor cells.


2018 ◽  
Vol 69 (4) ◽  
pp. 906-909
Author(s):  
Ionut Cazan ◽  
Sidonia Susanu ◽  
Otilia Boisteanu ◽  
Diana Tatarciuc ◽  
Victor Vlad Costan ◽  
...  

We tempted to explore the biochemical effects, represented by apoptosis, triggered by conditioned medium, obtained as a result of culturing mesenchymal stem cells for 24 h, on endothelial progenitor cells. The mesenchymal stem cells were developed on collagen fibers in the presence of thapsigargin, concanavalin A, leptin and ghrelin. Meanwhile, were used the following inhibitors: AG490, a JAK2 inhibitor; PD98059, a MEK/ERK inhibitor; and LY294002, a PI3K/Akt signaling inhibitor. When we analyzed the results, we observed that the conditioned medium, obtained from mesenchymal stem cells cultivation, applied in a 10% concentration for 24 H , induced apoptosis of endothelial progenitor cells in different degrees: 10 �M leptin] ghrelin]]concanavalin A @ apelin. Furthermore, LY294002 and AG490-conditioned medium of mesenchymal stem cells reduced the apoptotic effects induced by leptin on developed endothelial progenitor cells. The very first conclusion is that the inhibition of PI3K/Akt signaling pathway is blocking the apoptotic effects of leptin stimulation of mesenchymal stem cells population. The inhibition of JAK/STAT pathways seems to be less effective.


Sign in / Sign up

Export Citation Format

Share Document