scholarly journals The impact of electroconvulsive therapy on brain grey matter volume: What does it mean?

2020 ◽  
Vol 13 (5) ◽  
pp. 1226-1231 ◽  
Author(s):  
Harold A. Sackeim
2016 ◽  
Vol 41 (2) ◽  
pp. 105-114 ◽  
Author(s):  
Filip Bouckaert ◽  
François-Laurent De Winter ◽  
Louise Emsell ◽  
Annemieke Dols ◽  
Didi Rhebergen ◽  
...  

2018 ◽  
Author(s):  
Qun Ye ◽  
Futing Zou ◽  
Michael Dayan ◽  
Hakwan Lau ◽  
Yi Hu ◽  
...  

AbstractBackgroundA recent virtual-lesion study using inhibitory repetitive transcranial magnetic stimulation (rTMS) confirmed the causal behavioral relevance of the precuneus in the evaluation of one’s own memory performance (aka mnemonic metacognition).ObjectiveThis study’s goal is to elucidate how these TMS-induced neuromodulatory effects might relate to the neural correlates and be modulated by individual anatomical profiles in relation to meta-memory.MethodsIn a within-subjects design, we assessed the impact of 20-min rTMS over the precuneus, compared to the vertex, across three magnetic resonance imaging (MRI) neuro-profiles on 18 healthy subjects during a memory versus a perceptual task.ResultsTask-based functional MRI revealed that BOLD signal magnitude in the precuneus is associated with variation in individual meta-memory efficiency, and such correlation diminished significantly following TMS targeted at the precuneus. Moreover, individuals with higher resting-state functional connectivity (rs-fcMRI) between the precuneus and the hippocampus, or smaller grey matter volume in the stimulated precuneal region exhibit considerably higher vulnerability to the TMS effect. These effects were not observed in the perceptual domain.ConclusionWe provide compelling evidence in outlining a possible circuit encompassing the precuneus and its mnemonic midbrain neighbor the hippocampus at the service of realizing our meta-awareness during memory recollection of episodic details.HighlightsTMS on precuneus reduces meta-memory ability during memory retrieval.TMS disrupts the correlation between BOLD activity and meta-memory ability.TMS effect is modulated by rs-fcMRI between precuneus and hippocampus.Individuals with greater precuneal grey matter volume more immune to TMS effect.


2020 ◽  
Vol 45 ◽  
pp. 102351
Author(s):  
L. Lorefice ◽  
E. Carta ◽  
J. Frau ◽  
F. Contu ◽  
E. Casaglia ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Gaia Olivo ◽  
Jonna Nilsson ◽  
Benjamín Garzón ◽  
Alexander Lebedev ◽  
Anders Wåhlin ◽  
...  

AbstractVO2max (maximal oxygen consumption), a validated measure of aerobic fitness, has been associated with better cerebral artery compliance and measures of brain morphology, such as higher cortical thickness (CT) in frontal, temporal and cingular cortices, and larger grey matter volume (GMV) of the middle temporal gyrus, hippocampus, orbitofrontal cortex and cingulate cortex. Single sessions of physical exercise can promptly enhance cognitive performance and brain activity during executive tasks. However, the immediate effects of exercise on macro-scale properties of the brain’s grey matter remain unclear. We investigated the impact of one session of moderate-intensity physical exercise, compared with rest, on grey matter volume, cortical thickness, working memory performance, and task-related brain activity in older adults. Cross-sectional associations between brain measures and VO2max were also tested. Exercise did not induce statistically significant changes in brain activity, grey matter volume, or cortical thickness. Cardiovascular fitness, measured by VO2max, was associated with lower grey matter blood flow in the left hippocampus and thicker cortex in the left superior temporal gyrus. Cortical thickness was reduced at post-test independent of exercise/rest. Our findings support that (1) fitter individuals may need lower grey matter blood flow to meet metabolic oxygen demand, and (2) have thicker cortex.


2021 ◽  
Vol 46 (4) ◽  
pp. E418-E426
Author(s):  
Nils Opel ◽  
Katherine L. Narr ◽  
Christopher Abbott ◽  
Miklos Argyelan ◽  
Randall Espinoza ◽  
...  

Background: Obesity is a frequent somatic comorbidity of major depression, and it has been associated with worse clinical outcomes and brain structural abnormalities. Converging evidence suggests that electroconvulsive therapy (ECT) induces both clinical improvements and increased subcortical grey matter volume in patients with depression. However, it remains unknown whether increased body weight modulates the clinical response and structural neuroplasticity that occur with ECT. Methods: To address this question, we conducted a longitudinal investigation of structural MRI data from the Global ECT-MRI Research Collaboration (GEMRIC) in 223 patients who were experiencing a major depressive episode (10 scanning sites). Structural MRI data were acquired before and after ECT, and we assessed change in subcortical grey matter volume using FreeSurfer and Quarc. Results: Higher body mass index (BMI) was associated with a significantly lower increase in subcortical grey matter volume following ECT. We observed significant negative associations between BMI and change in subcortical grey matter volume, with pronounced effects in the thalamus and putamen, where obese participants showed increases in grey matter volume that were 43.3% and 49.6%, respectively, of the increases found in participants with normal weight. As well, BMI significantly moderated the association between subcortical grey matter volume change and clinical response to ECT. We observed no significant association between BMI and clinical response to ECT. Limitations: Because only baseline BMI values were available, we were unable to study BMI changes during ECT and their potential association with clinical and grey matter volume change. Conclusion: Future studies should take into account the relevance of body weight as a modulator of structural neuroplasticity during ECT treatment and aim to further explore the functional relevance of this novel finding.


2013 ◽  
Vol 44 (9) ◽  
pp. 1965-1975 ◽  
Author(s):  
L. Fonville ◽  
V. Giampietro ◽  
S. C. R. Williams ◽  
A. Simmons ◽  
K. Tchanturia

BackgroundBrain structure alterations have been reported in anorexia nervosa, but findings have been inconsistent. This may be due to inadequate sample size, sample heterogeneity or differences in methodology.MethodHigh resolution magnetic resonance images were acquired of 33 adult participants with anorexia nervosa and 33 healthy participants, the largest study sample to date, in order to assess whole-brain volume, ventricular cerebrospinal fluid, white matter and grey matter volume. Voxel-based morphometry was conducted to assess regional grey matter volume. Levels of depression, anxiety, obsessionality and eating disorder-related symptoms were measured and used to explore correlations with brain structure.ResultsParticipants with anorexia nervosa had smaller brain volumes as well as a global decrease in grey matter volume with ventricular enlargement. Voxel-based morphometry revealed a decrease in grey matter volume spanning across the cerebellum, temporal, frontal and occipital lobes. A correlation was found between grey matter volume loss and duration of illness in the cerebellum and mesencephalon. No correlations were found with clinical measures.ConclusionsFindings are in accordance with several previous studies on brain structure and match functional studies that have assessed the symptomatology of anorexia nervosa, such as body image distortion and cognitive bias to food. The correlation with duration of illness supports the implication of cerebellar atrophy in the maintenance of low weight and disrupted eating behaviour and illustrates its role in the chronic phase of anorexia nervosa. The lack of other correlations suggests that these findings are not related to the presence of co-morbid disorders.


Author(s):  
William D. Hopkins ◽  
Cheryl D. Stimpson ◽  
Chet C. Sherwood

Bonobos and chimpanzees are two closely relates species of the genus Pan, yet they exhibit marked differences in anatomy, behaviour and cognition. For this reason, comparative studies on social behaviour, cognition and brain organization between these two species provide important insights into evolutionary models of human origins. This chapter summarizes studies on socio-communicative competencies and social cognition in chimpanzees and bonobos from the authors’ laboratory in comparison to previous reports. Additionally, recent data on species differences and similarities in brain organization in grey matter volume and distribution is presented. Some preliminary findings on microstructural brain organization such as neuropil space and cellular distribution in key neurotransmitters and neuropeptides involved in social behaviour and cognition is presented. Though these studies are in their infancy, the findings point to potentially important differences in brain organization that may underlie bonobo and chimpanzees’ differences in social behaviour, communication and cognition. Les bonobos et les chimpanzés sont deux espèces du genus Pan prochement liées, néanmoins ils montrent des différences anatomiques, comportementales et cognitives marquées. Pour cette raison, les études comparatives sur le comportement social, la cognition et l’organisation corticale entre ces deux espèces fournissent des idées sur les modèles évolutionnaires des origines humaines. Dans ce chapitre, nous résumons des études sur les compétences socio-communicatives et la cognition sociale chez les chimpanzés et les bonobos de notre laboratoire en comparaison avec des rapports précédents. En plus, nous présentons des données récentes sur les différences et similarités d’organisation corticale du volume et distribution de la matière grise entre espèces. Nous présentons plus de résultats préliminaires sur l’organisation corticale microstructurale comme l’espace neuropile et la division cellulaire dans des neurotransmetteurs clés et les neuropeptides impliqués dans le comportement social et la cognition. Bien que ces études sont dans leur enfance, les résultats montrent des différences d’organisation corticale importantes qui sont à la base des différences de comportement social, la communication et la cognition entre les bonobos et les chimpanzés.


2021 ◽  
pp. jnnp-2020-323541
Author(s):  
Jessica L Panman ◽  
Vikram Venkatraghavan ◽  
Emma L van der Ende ◽  
Rebecca M E Steketee ◽  
Lize C Jiskoot ◽  
...  

ObjectiveProgranulin-related frontotemporal dementia (FTD-GRN) is a fast progressive disease. Modelling the cascade of multimodal biomarker changes aids in understanding the aetiology of this disease and enables monitoring of individual mutation carriers. In this cross-sectional study, we estimated the temporal cascade of biomarker changes for FTD-GRN, in a data-driven way.MethodsWe included 56 presymptomatic and 35 symptomatic GRN mutation carriers, and 35 healthy non-carriers. Selected biomarkers were neurofilament light chain (NfL), grey matter volume, white matter microstructure and cognitive domains. We used discriminative event-based modelling to infer the cascade of biomarker changes in FTD-GRN and estimated individual disease severity through cross-validation. We derived the biomarker cascades in non-fluent variant primary progressive aphasia (nfvPPA) and behavioural variant FTD (bvFTD) to understand the differences between these phenotypes.ResultsLanguage functioning and NfL were the earliest abnormal biomarkers in FTD-GRN. White matter tracts were affected before grey matter volume, and the left hemisphere degenerated before the right. Based on individual disease severities, presymptomatic carriers could be delineated from symptomatic carriers with a sensitivity of 100% and specificity of 96.1%. The estimated disease severity strongly correlated with functional severity in nfvPPA, but not in bvFTD. In addition, the biomarker cascade in bvFTD showed more uncertainty than nfvPPA.ConclusionDegeneration of axons and language deficits are indicated to be the earliest biomarkers in FTD-GRN, with bvFTD being more heterogeneous in disease progression than nfvPPA. Our data-driven model could help identify presymptomatic GRN mutation carriers at risk of conversion to the clinical stage.


2020 ◽  
Author(s):  
A. Buhrmann ◽  
A. M. A. Brands ◽  
J. van der Grond ◽  
C. Schilder ◽  
R. C. van der Mast ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document