scholarly journals Elevated body weight modulates subcortical volume change and associated clinical response following electroconvulsive therapy

2021 ◽  
Vol 46 (4) ◽  
pp. E418-E426
Author(s):  
Nils Opel ◽  
Katherine L. Narr ◽  
Christopher Abbott ◽  
Miklos Argyelan ◽  
Randall Espinoza ◽  
...  

Background: Obesity is a frequent somatic comorbidity of major depression, and it has been associated with worse clinical outcomes and brain structural abnormalities. Converging evidence suggests that electroconvulsive therapy (ECT) induces both clinical improvements and increased subcortical grey matter volume in patients with depression. However, it remains unknown whether increased body weight modulates the clinical response and structural neuroplasticity that occur with ECT. Methods: To address this question, we conducted a longitudinal investigation of structural MRI data from the Global ECT-MRI Research Collaboration (GEMRIC) in 223 patients who were experiencing a major depressive episode (10 scanning sites). Structural MRI data were acquired before and after ECT, and we assessed change in subcortical grey matter volume using FreeSurfer and Quarc. Results: Higher body mass index (BMI) was associated with a significantly lower increase in subcortical grey matter volume following ECT. We observed significant negative associations between BMI and change in subcortical grey matter volume, with pronounced effects in the thalamus and putamen, where obese participants showed increases in grey matter volume that were 43.3% and 49.6%, respectively, of the increases found in participants with normal weight. As well, BMI significantly moderated the association between subcortical grey matter volume change and clinical response to ECT. We observed no significant association between BMI and clinical response to ECT. Limitations: Because only baseline BMI values were available, we were unable to study BMI changes during ECT and their potential association with clinical and grey matter volume change. Conclusion: Future studies should take into account the relevance of body weight as a modulator of structural neuroplasticity during ECT treatment and aim to further explore the functional relevance of this novel finding.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
M. G. Ramesh Babu ◽  
Rajagopal Kadavigere ◽  
Prakashini Koteshwara ◽  
Brijesh Sathian ◽  
Kiranmai S. Rai

Abstract Studies provide evidence that practicing meditation enhances neural plasticity in reward processing areas of brain. No studies till date, provide evidence of such changes in Rajyoga meditation (RM) practitioners. The present study aimed to identify grey matter volume (GMV) changes in reward processing areas of brain and its association with happiness scores in RM practitioners compared to non-meditators. Structural MRI of selected participants matched for age, gender and handedness (n = 40/group) were analyzed using voxel-based morphometric method and Oxford Happiness Questionnaire (OHQ) scores were correlated. Significant increase in OHQ happiness scores were observed in RM practitioners compared to non-meditators. Whereas, a trend towards significance was observed in more experienced RM practitioners, on correlating OHQ scores with hours of meditation experience. Additionally, in RM practitioners, higher GMV were observed in reward processing centers—right superior frontal gyrus, left inferior orbitofrontal cortex (OFC) and bilateral precuneus. Multiple regression analysis showed significant association between OHQ scores of RM practitioners and reward processing regions right superior frontal gyrus, left middle OFC, right insula and left anterior cingulate cortex. Further, with increasing hours of RM practice, a significant positive association was observed in bilateral ventral pallidum. These findings indicate that RM practice enhances GMV in reward processing regions associated with happiness.


2016 ◽  
Vol 41 (2) ◽  
pp. 105-114 ◽  
Author(s):  
Filip Bouckaert ◽  
François-Laurent De Winter ◽  
Louise Emsell ◽  
Annemieke Dols ◽  
Didi Rhebergen ◽  
...  

2021 ◽  
Vol 126 ◽  
pp. 105148
Author(s):  
Marius Ludwig ◽  
Maike Richter ◽  
Janik Goltermann ◽  
Ronny Redlich ◽  
Jonathan Repple ◽  
...  

2022 ◽  
Author(s):  
Sidhant Chopra ◽  
Stuart Oldham ◽  
Ashlea Segal ◽  
Alexander Holmes ◽  
Kristina Sabaroedin ◽  
...  

Background: Different regions of the brain's grey matter are connected by a complex structural network of white matter fibres which are responsible for the propagation of action potentials and the transport of trophic and other molecules. In neurodegenerative disease, these connections constrain the way in which grey matter volume loss progresses. Here, we investigated whether connectome architecture also shapes the spatial pattern of longitudinal grey matter volume changes attributable to illness and antipsychotic medication in first episode psychosis (FEP). Methods: We conducted a triple-blind randomised placebo-control MRI study where 62 young adults with first episode psychosis received either an atypical antipsychotic or placebo over 6-months. A healthy control group was also recruited. Anatomical MRI scans were acquired at baseline, 3-months and 12-months. Deformation-based morphometry was used to estimate illness-related and antipsychotic-related grey matter volume changes over time. Representative functional and structural brain connectivity patterns were derived from an independent healthy control group using resting-state functional MRI and diffusion-weighted imaging. We used neighbourhood deformation models to predict the extent of brain change in a given area by the changes observed in areas to which it is either structurally connected or functionally coupled. Results: At baseline, we found that empirical illness-related regional volume differences were strongly correlated with predicted differences using a model constrained by structural connectivity weights (ρ = .541; p < .001). At 3-months and 12-months, we also found a strong correlation between longitudinal regional illness-related (ρ > .516; p < .001) and antipsychotic-related volume change (ρ > .591; p < .001) with volumetric changes in structurally connected areas. These correlations were significantly greater than those observed across various null models accounting for lower-order spatial and network properties of the data. Associations between empirical and predicted volume change estimates were much lower for models that only considered binary structural connectivity (all ρ < .376), or which were constrained by inter-regional functional coupling (all ρ < .436). Finally, we found that potential epicentres of volume change emerged posteriorly early in the illness and shifted to the prefrontal cortex by later illness stages. Conclusion: Psychosis- and antipsychotic-related grey matter volume changes are strongly shaped by anatomical brain connectivity. This result is consistent with findings in other neurological disorders and implies that such connections may constrain pathological processes causing brain dysfunction in FEP.


2020 ◽  
Author(s):  
Ian A. Clark ◽  
Anna M. Monk ◽  
Victoria Hotchin ◽  
Gloria Pizzamiglio ◽  
Alice Liefgreen ◽  
...  

AbstractMarked disparities exist across healthy individuals in their ability to imagine scenes, recall autobiographical memories, think about the future and navigate in the world. The importance of the hippocampus in supporting these critical cognitive functions has prompted the question of whether differences in hippocampal grey matter volume could be one source of performance variability. Evidence to date has been somewhat mixed. In this study we sought to mitigate issues that commonly affect these types of studies. Data were collected from a large sample of 217 young, healthy adult participants, including whole brain structural MRI data (0.8mm isotropic voxels) and widely-varying performance on scene imagination, autobiographical memory, future thinking and navigation tasks. We found little evidence that hippocampal grey matter volume was related to task performance in this healthy sample. This was the case using different analysis methods (voxel-based morphometry, partial correlations), when whole brain or hippocampal regions of interest were examined, when comparing different sub-groups (divided by gender, task performance, self-reported ability), and when using latent variables derived from across the cognitive tasks. Hippocampal grey matter volume may not, therefore, significantly influence performance on tasks known to require the hippocampus in healthy people. Perhaps only in extreme situations, as in the case of licensed London taxi drivers, are measurable ability-related hippocampus volume changes consistently exhibited.HighlightsEvidence is mixed about whether hippocampal volume affects cognitive task performanceThis is particularly the case concerning individual differences in healthy peopleWe collected structural MRI data from 217 healthy peopleThey also had widely-varying performance on cognitive tasks linked to the hippocampusIn-depth analyses showed little evidence hippocampal volume affected task performance


Sign in / Sign up

Export Citation Format

Share Document