Application of life-cycle assessment to early stage building design for reduced embodied environmental impacts

2013 ◽  
Vol 60 ◽  
pp. 81-92 ◽  
Author(s):  
J. Basbagill ◽  
F. Flager ◽  
M. Lepech ◽  
M. Fischer
2020 ◽  
Vol 12 (3) ◽  
pp. 1192 ◽  
Author(s):  
Nils Thonemann ◽  
Anna Schulte ◽  
Daniel Maga

Emerging technologies are expected to contribute to environmental sustainable development. However, throughout the development of novel technologies, it is unknown whether emerging technologies can lead to reduced environmental impacts compared to a potentially displaced mature technology. Additionally, process steps suspected to be environmental hotspots can be improved by process engineers early in the development of the emerging technology. In order to determine the environmental impacts of emerging technologies at an early stage of development, prospective life cycle assessment (LCA) should be performed. However, consistency in prospective LCA methodology is lacking. Therefore, this article develops a framework for a prospective LCA in order to overcome the methodological inconsistencies regarding prospective LCAs. The methodological framework was developed using literature on prospective LCAs of emerging technologies, and therefore, a literature review on prospective LCAs was conducted. We found 44 case studies, four review papers, and 17 papers on methodological guidance. Three main challenges for conducting prospective LCAs are identified: Comparability, data, and uncertainty challenges. The issues in defining the aim, functionality, and system boundaries of the prospective LCAs, as well as problems with specifying LCIA methodologies, comprise the comparability challenge. Data availability, quality, and scaling are issues within the data challenge. Finally, uncertainty exists as an overarching challenge when applying a prospective LCA. These three challenges are especially crucial for the prospective assessment of emerging technologies. However, this review also shows that within the methodological papers and case studies, several approaches exist to tackle these challenges. These approaches were systematically summarized within a framework to give guidance on how to overcome the issues when conducting prospective LCAs of emerging technologies. Accordingly, this framework is useful for LCA practitioners who are analyzing early-stage technologies. Nevertheless, further research is needed to develop appropriate scale-up schemes and to include uncertainty analyses for a more in-depth interpretation of results.


Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2773 ◽  
Author(s):  
Christian Moretti ◽  
Blanca Corona ◽  
Viola Rühlin ◽  
Thomas Götz ◽  
Martin Junginger ◽  
...  

Biomass-fueled combined heat and power systems (CHPs) can potentially offer environmental benefits compared to conventional separate production technologies. This study presents the first environmental life cycle assessment (LCA) of a novel high-efficiency bio-based power (HBP) technology, which combines biomass gasification with a 199 kW solid oxide fuel cell (SOFC) to produce heat and electricity. The aim is to identify the main sources of environmental impacts and to assess the potential environmental performance compared to benchmark technologies. The use of various biomass fuels and alternative allocation methods were scrutinized. The LCA results reveal that most of the environmental impacts of the energy supplied with the HBP technology are caused by the production of the biomass fuel. This contribution is higher for pelletized than for chipped biomass. Overall, HBP technology shows better environmental performance than heat from natural gas and electricity from the German/European grid. When comparing the HBP technology with the biomass-fueled ORC technology, the former offers significant benefits in terms of particulate matter (about 22 times lower), photochemical ozone formation (11 times lower), acidification (8 times lower) and terrestrial eutrophication (about 26 times lower). The environmental performance was not affected by the allocation parameter (exergy or economic) used. However, the tested substitution approaches showed to be inadequate to model multiple environmental impacts of CHP plants under the investigated context and goal.


2021 ◽  
Vol 11 (7) ◽  
pp. 2964
Author(s):  
Gregor Braun ◽  
Claudia Som ◽  
Mélanie Schmutz ◽  
Roland Hischier

The textile industry is recognized as being one of the most polluting industries. Thus, the European Union aims to transform the textile industry with its “European Green Deal” and “Circular Economy Action Plan”. Awareness regarding the environmental impact of textiles is increasing and initiatives are appearing to make more sustainable products with a strong wish to move towards a circular economy. One of these initiatives is wear2wearTM, a collaboration consisting of multiple companies aiming to close the loop for polyester textiles. However, designing a circular product system does not lead automatically to lower environmental impacts. Therefore, a Life Cycle Assessment study has been conducted in order to compare the environmental impacts of a circular with a linear workwear jacket. The results show that a thoughtful “circular economy system” design approach can result in significantly lower environmental impacts than linear product systems. The study illustrates at the same time the necessity for Life Cycle Assessment practitioners to go beyond a simple comparison of one product to another when it comes to circular economy. Such products require a wider system analysis approach that takes into account multiple loops, having interconnected energy and material flows through reuse, remanufacture, and various recycling practices.


2021 ◽  
Vol 13 (5) ◽  
pp. 2525
Author(s):  
Camila López-Eccher ◽  
Elizabeth Garrido-Ramírez ◽  
Iván Franchi-Arzola ◽  
Edmundo Muñoz

The aim of this study is to assess the environmental impacts of household life cycles in Santiago, Chile, by household income level. The assessment considered scenarios associated with environmental policies. The life cycle assessment was cradle-to-grave, and the functional unit considered all the materials and energy required to meet an inhabitant’s needs for one year (1 inh/year). Using SimaPro 9.1 software, the Recipe Midpoint (H) methodology was used. The impact categories selected were global warming, fine particulate matter formation, terrestrial acidification, freshwater eutrophication, freshwater ecotoxicity, mineral resource scarcity, and fossil resource scarcity. The inventory was carried out through the application of 300 household surveys and secondary information. The main environmental sources of households were determined to be food consumption, transport, and electricity. Food consumption is the main source, responsible for 33% of the environmental impacts on global warming, 69% on terrestrial acidification, and 29% on freshwater eutrophication. The second most crucial environmental hotspot is private transport, whose contribution to environmental impact increases as household income rises, while public transport impact increases in the opposite direction. In this sense, both positive and negative environmental effects can be generated by policies. Therefore, life-cycle environmental impacts, the synergy between policies, and households’ socio-economic characteristics must be considered in public policy planning and consumer decisions.


2021 ◽  
Vol 13 (7) ◽  
pp. 3856
Author(s):  
Rebeka Kovačič Lukman ◽  
Vasja Omahne ◽  
Damjan Krajnc

When considering the sustainability of production processes, research studies usually emphasise environmental impacts and do not adequately address economic and social impacts. Toy production is no exception when it comes to assessing sustainability. Previous research on toys has focused solely on assessing environmental aspects and neglected social and economic aspects. This paper presents a sustainability assessment of a toy using environmental life cycle assessment, life cycle costing, and social life cycle assessment. We conducted an inventory analysis and sustainability impact assessment of the toy to identify the hotspots of the system. The main environmental impacts are eutrophication, followed by terrestrial eco-toxicity, acidification, and global warming. The life cycle costing approach examined the economic aspect of the proposed design options for toys, while the social assessment of the alternative designs revealed social impacts along the product life cycle. In addition, different options based on the principles of the circular economy were analysed and proposed in terms of substitution of materials and shortening of transport distances for the toy studied.


2021 ◽  
Vol 13 (5) ◽  
pp. 2898
Author(s):  
Rakhyun Kim ◽  
Myung-Kwan Lim ◽  
Seungjun Roh ◽  
Won-Jun Park

This study analyzed the characteristics of the environmental impacts of apartment buildings, a typical housing type in South Korea, as part of a research project supporting the streamlined life cycle assessment (S-LCA) of buildings within the G-SEED (Green Standard for Energy and Environmental Design) framework. Three recently built apartment building complexes were chosen as study objects for the quantitative evaluation of the buildings in terms of their embodied environmental impacts (global warming potential, acidification potential, eutrophication potential, ozone layer depletion potential, photochemical oxidant creation potential, and abiotic depletion potential), using the LCA approach. Additionally, we analyzed the emission trends according to the cut-off criteria of the six environmental impact categories by performing an S-LCA with cut-off criteria 90–99% of the cumulative weight percentile. Consequently, we were able to present the cut-off criterion best suited for S-LCA and analyze the effect of the cut-off criteria on the environmental impact analysis results. A comprehensive environmental impact analysis of the characteristics of the six environmental impact categories revealed that the error rate was below 5% when the cut-off criterion of 97.5% of the cumulative weight percentile was applied, thus verifying its validity as the optimal cut-off criterion for S-LCA.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2472
Author(s):  
Karel Struhala ◽  
Milan Ostrý

Contemporary research stresses the need to reduce mankind’s environmental impacts and achieve sustainability. One of the keys to this is the construction sector. New buildings have to comply with strict limits regarding resource consumption (energy, water use, etc.). However, they make up only a fraction of the existing building stock. Renovations of existing buildings are therefore essential for the reduction of the environmental impacts in the construction sector. This paper illustrates the situation using a case study of a rural terraced house in a village near Brno, Czech Republic. It compares the life-cycle assessment (LCA) of the original house and its proposed renovation as well as demolition followed by new construction. The LCA covers both the initial embodied environmental impacts (EEIs) and the 60-year operation of the house with several variants of energy sources. The results show that the proposed renovation would reduce overall environmental impacts (OEIs) of the house by up to 90% and the demolition and new construction by up to 93% depending on the selected energy sources. As such, the results confirm the importance of renovations and the installation of environmentally-friendly energy sources for achieving sustainability in the construction sector. They also show the desirability of the replacement of inefficient old buildings by new construction in specific cases.


2016 ◽  
Vol 106 (03) ◽  
pp. 136-140
Author(s):  
R. Miehe ◽  
M. Wiedenmann ◽  
T. Prof. Bauernhansl

Die Ökobilanz hat sich als Instrument zur Bewertung der Umweltauswirkungen von Produkten und Prozessen durchgesetzt. Dennoch stellt ihre Durchführung Nutzer immer wieder vor Herausforderungen. Der Fachartikel präsentiert einen Ansatz für eine vergleichende Betrachtung der ökologischen Auswirkungen des unternehmerischen Handelns auf Basis der jeweiligen Unternehmens- und Branchenumsätze. Der Umsatz-Nachhaltigkeitsindex soll als Konzept für ein Benchmark für Unternehmen einer Branche dienen.   Life Cycle Assessment has prevailed as an instrument to evaluate the environmental impact of products and processes. Its execution, however, poses a challenge to operators. In this paper, we present an approach for a comparative examination of environmental impacts of industrial behavior based on the turnover of companies and their equivalent sectors. The Turnover-Sustainability-Index serves as a benchmark for companies within a sector.


Sign in / Sign up

Export Citation Format

Share Document