A comparative study of predicting individual thermal sensation and satisfaction using wrist-worn temperature sensor, thermal camera and ambient temperature sensor

2019 ◽  
Vol 160 ◽  
pp. 106223 ◽  
Author(s):  
Ashrant Aryal ◽  
Burcin Becerik-Gerber
2021 ◽  
Vol 896 (1) ◽  
pp. 012074
Author(s):  
W Budiawan ◽  
K Tsuzuki ◽  
H Sakakibara

Abstract The comfort temperature and sleep quality of Indonesian residing in Japan during summer might be different from Japanese. As an extended previous research, this study aimed to compare the thermal comfort and sleep quality between Japanese and Indonesian students. Male Indonesian and Japanese students aged 20-35 years participated in this study. The participants completed a survey regarding thermal sensation before sleep. During sleep, actigraphy was used to monitor sleep. Additionally, the temperature and relative humidity of the participants’ bedrooms were recorded. The findings of this study indicated that Indonesian students’ bedroom temperature and relative humidity were not significantly different from those of Japanese students during the summer. Most of Indonesian students preferred neutral, like the Japanese students. According to a thermal comfort survey, Indonesians had the same sensation as Japanese (slightly comfortable). However, the Griffiths method revealed that the mean comfort temperature of Indonesian was higher than those of Japanese students. We also discovered that Indonesian students had shorter duration on bed and sleep minute than Japanese students. Furthermore, the sleep rate of Indonesian students was comparable to that of Japanese students. In conclusion, Indonesian students as tropical native became capable of adjusting to the hot and humid conditions in temperate climate, Japan.


2014 ◽  
Vol 684 ◽  
pp. 245-247
Author(s):  
Hui Ping Zhang ◽  
Zheng Kun Qin

Single-chip AT89C2051 as the main-control component of the device, we designed a digital thermometer from the aspects of hardware, it with the aid of temperature sensor DS18B20, the device used single bus technology to detect the ambient temperature (analogue) is converted into digital quantity, it was accepted, processed, judged by single-chip microcomputerand then control and display. The temperature measured range in - 30 °C to + 120 °C, the accuracy class + 0.5 °C, four LED Nixie tube as display mode.


Author(s):  
Irfan Arif ◽  
Akbar Sujiwa

Watering plants usually done manually using human power. that has risk negligence and inaccuracy. also, in time and cost is not efficient. Another factor that can affect the quality of crops is a factor of humidity and temperature. For those reason, writers made a tool that can work according to the level of humidity and temperature automatically and continuously. This tool uses Zelio Smart Relay as automatic controller. The 808H5V5 humidity sensor and LM35 temperature sensor is used as input. The LM35 temperature sensor detect the ambient temperature, where as 808H5V5 humidity sensor detect ambient air humidity, and time of watering adapted to the Smart Relay timer. The entire sensor input is programmed using ZELIO SOFT 2. Setting the temperature and humidity when the detected 30oC and >70% as well as the timeshows at 08.30 – 09.00 am and 16.00 – 16.30 pm the pump will automatically ON.


2020 ◽  
pp. 1420326X2097473
Author(s):  
Yongqiang Xiao ◽  
Yaping Gao ◽  
Yi Wang ◽  
Xiaojing Meng

Solar radiation intensity affects both subjective reactions and physiological functions, especially for people who exercise heavily. Field experiments including a questionnaire survey at various ambient temperatures were performed; outdoor activities under shading (irradiance I =  50 ± 20 W/m2) and non-shading ( I =  700 ± 50 W/m2) conditions during summer in Xi'an were recorded. The results of questionnaires indicated that when the human body reached an extremely hot state, the corresponding environmental temperature was 3.7 °C lower under the non-shading condition, and the range of actual acceptable temperatures was narrower. In terms of thermal sensation, there was a significant difference for people who exercise heavily and those who do not. The results also showed that the curve of fatigue sensation exhibited an inverse Gaussian distribution. Namely, fatigue was promoted under both colder and hotter conditions. Moreover, under non-shading condition, the lowest fatigue incidence was higher, and the corresponding ambient temperature was lower. Changes in objective physiological responses indicated that the solar radiation might cause heat stress. Therefore, when the ambient temperature was higher than 32 °C, physiological stress was higher. Under the same exercise load, the blood pressure was higher under the non-shading condition and systolic blood pressure increased with ambient temperature.


2021 ◽  
pp. 004051752110571
Author(s):  
Tin Wai Cheung ◽  
Tao Liu ◽  
Mei Yu Yao ◽  
Yifei Tao ◽  
He Lin ◽  
...  

Textiles are conventionally utilized as the raw materials for making clothing and complementary accessories. To keep abreast of the times, a new direction of integrating textiles into electronic technology has been given in order to develop a temperature-sensing device with outstanding built-in flexibility, versality and softness. In this study, a flexible construction of the textile-based thermocouple temperature sensor via an industrial-and-technological-based weaving process was designed. The feasible arrangement of the conductive textile materials in the warp and weft directions related to the temperature-sensing ability was studied in detail, and significant linearity was shown in the range of 5–50[Formula: see text] with different groups of combinations of the conductive yarns. More cross-intersections and ‘hot junctions’ resulted from the 3 × 3 warp–weft arrangement, offering higher stability and accuracy in thermal sensation. Besides, the resistance of the thermocouple remained almost constant under different degrees of bending. The relationship between the resistance and the bending flexibility was also investigated over a range of temperature.


2011 ◽  
Vol 135-136 ◽  
pp. 1129-1133 ◽  
Author(s):  
Li Mei Dong

AT89S52 microcontroller was the center controler for wireless temperature measurement and alarm system, through temperature measurement circuit and remote wireless alarm circuit, realized the temperature detection and off-limit alarm of the ambient temperature. The system was composed of temperature acquisition circuit, display circuit and alarm circuit. Temperature sensor was DS18B20, real-time temperature displayed via LED displayer. Users can customize the alarm lower limit and superior limit. when the ambient temperature exceeds the alarm limit, the microcontroller will start the sound and light alarm, and remote wireless alarm. Temperature measurement range from -40 °C to +85 °C, measurement accuracy is 0.5 °C, wireless alarm distance is up to 100 meters. This system is of high precision, wide temperature measurement, and timely alarm.


Sign in / Sign up

Export Citation Format

Share Document