Ambient temperature effects on user thermal sensation with a simulated tablet computer

Author(s):  
Han Zhang ◽  
Alan Hedge ◽  
Beiyuan Guo
2016 ◽  
Vol 138 (3) ◽  
Author(s):  
Han Zhang ◽  
Alan Hedge ◽  
Beiyuan Guo

A series of experiments was conducted to investigate participant thermal responses to different surface temperatures, from 34 to 44 °C, for a simulated tablet computer in different ambient temperatures (13 °C, 23 °C, and 33 °C). Two subjective measures, thermal sensations and thermal comfort, were reported by the participants. Within the same ambient temperature, participants' thermal sensation and discomfort scores were positively correlated with the increase of surface temperature (higher surface temperatures gave warmer sensations). Thermal comfort also decreases with the increase of surface temperature in the tested range. In addition, ambient temperature moderated the effect of surface temperature on participants' thermal sensation scores. The higher surface temperature of 44 °C was rated warmer at 33 °C than 13 °C, but lower surface temperatures (34–38 °C) were rated less warm at 33 °C than 13 °C. On the other hand, all the surface temperatures were perceived less uncomfortable in an environment at 13 °C environment than at 33 °C. The findings can be used to set limits for future tablet computer heat dissipation designs to improve user's thermal experiences.


1975 ◽  
Vol 53 (6) ◽  
pp. 679-685 ◽  
Author(s):  
J. B. Holter ◽  
W. E. Urban Jr. ◽  
H. H. Hayes ◽  
H. Silver ◽  
H. R. Skutt

Six adult white-tailed deer (Odocoileus virginianus borealis) were exposed to 165 periods of 12 consecutive hours of controlled constant ambient temperature in an indirect respiration calorimeter. Temperatures among periods varied from 38 to 0 (summer) or to −20C (fall, winter, spring). Traits measured were energy expenditure (metabolic rate), proportion of time spent standing, heart rate, and body temperature, the latter two using telemetry. The deer used body posture extensively as a means of maintaining body energy equilibrium. Energy expenditure was increased at low ambient temperature to combat cold and to maintain relatively constant body temperature. Changes in heart rate paralleled changes in energy expenditure. In a limited number of comparisons, slight wind chill was combatted through behavioral means with no effect on energy expenditure. The reaction of deer to varying ambient temperatures was not the same in all seasons of the year.


Life Sciences ◽  
1966 ◽  
Vol 5 (20) ◽  
pp. 1887-1896 ◽  
Author(s):  
Mohamed K. Yousef ◽  
Larry Z. McFarland ◽  
Wilbor O. Wilson

2015 ◽  
Vol 3 ◽  
pp. 3123-3127 ◽  
Author(s):  
Nazi Faisal A. Chowdhury

2005 ◽  
Author(s):  
Gerald L. Morrison ◽  
Pardeep Brar

The flow field inside gas pipeline meter run is numerically simulated to determine the affects of upstream piping and temperature differences between the meter run pipe and the gas upon the flow. At bulk averaged velocities below 0.6 m/s (2 ft/s) significant changes in the velocity field are present which may alter the response of any flow meter mounted in the meter run. Examples for a bulk average velocity of 0.15 m/s (1/2 ft/s) and temperature differences with magnitudes of 27.7°C (50°F) are presented.


2020 ◽  
Vol 10 (8) ◽  
pp. 2869 ◽  
Author(s):  
Zhenpeng Wang ◽  
Minshui Huang ◽  
Jianfeng Gu

To study the variations in modal properties of a reinforced concrete (RC) slab (such as natural frequencies, mode shapes and damping ratios) under the influence of ambient temperature, a laboratory RC slab is monitored for over a year, the simple linear regression (LR) and autoregressive with exogenous input (ARX) models between temperature and frequencies are established and validated, and a damage identification based on particle swarm optimization (PSO) is utilized to detect the assumed damage considering temperature effects. Firstly, the vibration testing is performed for one year and the variations of natural frequencies, mode shapes and damping ratios under different ambient temperatures are analyzed. The obtained results show that the change of ambient temperature causes a major change of natural frequencies, which, on the contrary, has little effect on damping ratios and modal shapes. Secondly, based on a theoretical derivation analysis of natural frequency, the models are determined from experimental data on the healthy structure, and the functional relationship between temperature and elastic modulus is obtained. Based on the monitoring data, the LR model and ARX model between structural elastic modulus and ambient temperature are acquired, which can be used as the baseline of future damage identification. Finally, the established ARX model is validated based on a PSO algorithm and new data from the assumed 5% uniform damage and 10% uniform damage are compared with the models. If the eigenfrequency exceeds the certain confidence interval of the ARX model, there is probably another cause that drives the eigenfrequency variations, such as structural damage. Based on the constructed ARX model, the assumed damage is identified accurately.


Sign in / Sign up

Export Citation Format

Share Document