scholarly journals Mutant TP53 disrupts age-related accumulation patterns of somatic mutations in multiple cancer types

2016 ◽  
Vol 209 (9) ◽  
pp. 376-380 ◽  
Author(s):  
Wensheng Zhang ◽  
Erik K. Flemington ◽  
Kun Zhang
2019 ◽  
Vol 21 (4) ◽  
pp. 445-459 ◽  
Author(s):  
Julia C. Whitehall ◽  
Laura C. Greaves

AbstractAlterations in mitochondrial metabolism have been described as one of the major hallmarks of both ageing cells and cancer. Age is the biggest risk factor for the development of a significant number of cancer types and this therefore raises the question of whether there is a link between age-related mitochondrial dysfunction and the advantageous changes in mitochondrial metabolism prevalent in cancer cells. A common underlying feature of both ageing and cancer cells is the presence of somatic mutations of the mitochondrial genome (mtDNA) which we postulate may drive compensatory alterations in mitochondrial metabolism that are advantageous for tumour growth. In this review, we discuss basic mitochondrial functions, mechanisms of mtDNA mutagenesis and their metabolic consequences, and review the evidence for and against a role for mtDNA mutations in cancer development.


Cancers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 4572
Author(s):  
Tao Qing ◽  
Xinfeng Wang ◽  
Tomi Jun ◽  
Li Ding ◽  
Lajos Pusztai ◽  
...  

Germline BRCA1/2 mutations associated with HRD are clinical biomarkers for sensitivity to poly-ADP ribose polymerase inhibitors (PARPi) treatment in breast, ovarian, pancreatic, and prostate cancers. However, it remains unclear whether other mutations may also lead to HRD and PARPi sensitivity across a broader range of cancer types. Our goal was to determine the germline or somatic alterations associated with the HRD phenotype that might therefore confer PARPi sensitivity. Using germline and somatic genomic data from over 9000 tumors representing 32 cancer types, we examined associations between HRD scores and pathogenic germline variants, somatic driver mutations, and copy number deletions in 30 candidate genes involved in homologous recombination. We identified several germline and somatic mutations (e.g., BRCA1/2, PALB2, ATM, and ATR mutations) associated with HRD phenotype in ovarian, breast, pancreatic, stomach, bladder, and lung cancer. The co-occurrence of germline BRCA1 variants and somatic TP53 mutations was significantly associated with increasing HRD in breast cancer. Notably, we also identified multiple somatic copy number deletions associated with HRD. Our study suggests that multiple cancer types include tumor subsets that show HRD phenotype and should be considered in the future clinical studies of PARPi and synthetic lethality strategies exploiting HRD, which can be caused by a large number of genomic alterations.


2020 ◽  
Vol 26 ◽  
Author(s):  
Maryam Dashtiahangar ◽  
Leila Rahbarnia ◽  
Safar Farajnia ◽  
Arash Salmaninejad ◽  
Arezoo Gowhari Shabgah ◽  
...  

: The development of recombinant immunotoxins (RITs) as a novel therapeutic strategy has made a revolution in the treatment of cancer. RITs are resulting from the fusion of antibodies to toxin proteins for targeting and eliminating cancerous cells by inhibiting protein synthesis. Despite indisputable outcomes of RITs regarding inhibiting multiple cancer types, high immunogenicity has been known as the main obstacle in the clinical use of RITs. Various strategies have been proposed to overcome these limitations, including immunosuppressive therapy, humanization of the antibody fragment moiety, generation of immunotoxins originated from endogenous human cytotoxic enzymes, and modification of the toxin moiety to escape the immune system. This paper devoted to reviewing recent advances in the design of immunotoxins with lower immunogenicity.


Genes ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 466
Author(s):  
Chen Chen ◽  
Samuel Haddox ◽  
Yue Tang ◽  
Fujun Qin ◽  
Hui Li

Gene fusions and their products (RNA and protein) have been traditionally recognized as unique features of cancer cells and are used as ideal biomarkers and drug targets for multiple cancer types. However, recent studies have demonstrated that chimeric RNAs generated by intergenic alternative splicing can also be found in normal cells and tissues. In this study, we aim to identify chimeric RNAs in different non-neoplastic cell lines and investigate the landscape and expression of these novel candidate chimeric RNAs. To do so, we used HEK-293T, HUVEC, and LO2 cell lines as models, performed paired-end RNA sequencing, and conducted analyses for chimeric RNA profiles. Several filtering criteria were applied, and the landscape of chimeric RNAs was characterized at multiple levels and from various angles. Further, we experimentally validated 17 chimeric RNAs from different classifications. Finally, we examined a number of validated chimeric RNAs in different cancer and non-cancer cells, including blood from healthy donors, and demonstrated their ubiquitous expression pattern.


ACS Sensors ◽  
2021 ◽  
Author(s):  
Jing Wang ◽  
Alain Wuethrich ◽  
Richard J. Lobb ◽  
Fiach Antaw ◽  
Abu Ali Ibn Sina ◽  
...  

Viruses ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1082
Author(s):  
Huitao Liu ◽  
Honglin Luo

Oncolytic viruses have emerged as a promising strategy for cancer therapy due to their dual ability to selectively infect and lyse tumor cells and to induce systemic anti-tumor immunity. Among various candidate viruses, coxsackievirus group B (CVBs) have attracted increasing attention in recent years. CVBs are a group of small, non-enveloped, single-stranded, positive-sense RNA viruses, belonging to species human Enterovirus B in the genus Enterovirus of the family Picornaviridae. Preclinical studies have demonstrated potent anti-tumor activities for CVBs, particularly type 3, against multiple cancer types, including lung, breast, and colorectal cancer. Various approaches have been proposed or applied to enhance the safety and specificity of CVBs towards tumor cells and to further increase their anti-tumor efficacy. This review summarizes current knowledge and strategies for developing CVBs as oncolytic viruses for cancer virotherapy. The challenges arising from these studies and future prospects are also discussed in this review.


Sign in / Sign up

Export Citation Format

Share Document