Composition of PLGA and PEI/DNA nanoparticles improves ultrasound-mediated gene delivery in solid tumors in vivo

2008 ◽  
Vol 261 (2) ◽  
pp. 215-225 ◽  
Author(s):  
Olga V. Chumakova ◽  
Anton V. Liopo ◽  
Valery G. Andreev ◽  
Inga Cicenaite ◽  
B. Mark Evers ◽  
...  
Author(s):  
Sonsoles Díez ◽  
Itziar Miguéliz ◽  
Conchita Tros de Ilarduya

AbstractWe developed a new targeted cationic nanoparticulate system composed of poly(D,L-lactic-co-glycolic acid) (PLGA), 1,2-dioleoyl-3-(trimethylammonium) propane (DOTAP) and asialofetuin (AF), and found it to be a highly effective formulation for gene delivery to liver tumor cells. The nanoparticles (NP) were prepared by a modified solvent evaporation process that used two protocols in order to encapsulate (NP1 particles) or adsorb (NP2 particles) plasmid DNA. The final particles are in the nanoscale range. pDNA loaded in PLGA/DOTAP/AF particles with high loading efficiency showed a positive surface charge. Targeted asialofetuin-nanoparticles (AF-NP) carrying genes encoding for luciferase and interleukin-12 (IL-12) resulted in increased transfection efficiencies compared to free DNA and to plain (non-targeted) systems, even in the presence of 60% fetal bovine serum (FBS). The results of transfections performed on HeLa cells, defective in asialoglycoprotein receptors (ASGPr-), confirmed the receptor-mediated endocytosis mechanism. In summary, this is the first time that asialoglycoprotein receptor targeting by PLGA/DOTAP/DNA nanoparticles carrying the therapeutic gene IL-12 has been shown to be efficient in gene delivery to liver cancer cells in the presence of a very high concentration of serum, and this could be a potential system for in vivo application.


Gene Therapy ◽  
2020 ◽  
Vol 27 (5) ◽  
pp. 196-208 ◽  
Author(s):  
Basil Mathew ◽  
Raghu Ramanathan ◽  
Nathan A. Delvaux ◽  
Jacob Poliskey ◽  
Kevin G. Rice

2015 ◽  
Vol 112 (28) ◽  
pp. 8720-8725 ◽  
Author(s):  
Panagiotis Mastorakos ◽  
Adriana L. da Silva ◽  
Jane Chisholm ◽  
Eric Song ◽  
Won Kyu Choi ◽  
...  

Gene therapy has emerged as an alternative for the treatment of diseases refractory to conventional therapeutics. Synthetic nanoparticle-based gene delivery systems offer highly tunable platforms for the delivery of therapeutic genes. However, the inability to achieve sustained, high-level transgene expression in vivo presents a significant hurdle. The respiratory system, although readily accessible, remains a challenging target, as effective gene therapy mandates colloidal stability in physiological fluids and the ability to overcome biological barriers found in the lung. We formulated highly stable DNA nanoparticles based on state-of-the-art biodegradable polymers, poly(β-amino esters) (PBAEs), possessing a dense corona of polyethylene glycol. We found that these nanoparticles efficiently penetrated the nanoporous and highly adhesive human mucus gel layer that constitutes a primary barrier to reaching the underlying epithelium. We also discovered that these PBAE-based mucus-penetrating DNA nanoparticles (PBAE-MPPs) provided uniform and high-level transgene expression throughout the mouse lungs, superior to several gold standard gene delivery systems. PBAE-MPPs achieved robust transgene expression over at least 4 mo following a single administration, and their transfection efficiency was not attenuated by repeated administrations, underscoring their clinical relevance. Importantly, PBAE-MPPs demonstrated a favorable safety profile with no signs of toxicity following intratracheal administration.


2021 ◽  
Vol 11 (12) ◽  
pp. 5544
Author(s):  
Luis D. Terrazas Armendáriz ◽  
Itza E. Luna Cruz ◽  
Cynthia A. Alvizo Báez ◽  
Azael A. Cavazos Jaramillo ◽  
Cristina Rodríguez Padilla ◽  
...  

In cancer, the use of microbots based on anaerobic bacteria as specific transporters targeting tumor tissues has been explored since most solid tumors exhibit hypoxic regions. The aim of this study was to develop and characterize magnetic microbots based on Bifidobacteria and iron oxide fluorescent magnetic nanoparticles complexed with chitosan and a hypoxia inducible plasmid. In addition, the efficiency of the microbots for gene delivery to solid tumors was evaluated in an in vivo model by florescence and luminescence. To elaborate microbots, iron oxide fluorescent magnetic nanoparticles complexed with chitosan and a hypoxia-inducible plasmid called nanocomplex (NCs) with a size of 302 nm and a ζ potential of +16 mV were obtained and loaded onto Bifidobacteria membranes. Microbots with a diameter between 1–2 µm were characterized by atomic force microscopy (AFM) and scanning electron microscopy (SEM). Microbots were injected intravenously through the tail vein to tumor-bearing mice, and then a magnet was placed to focus them to the tumor area. Forty-eight hours after injection, the biodistribution was determined by florescence and luminescence. The greatest luminescence and fluorescence emitted were found in tumor tissue compared with the normal organs. We created a vector that can be directed by a magnet and deliver genes whose expression is regulated by hypoxic microenvironment of tumor.


2007 ◽  
Vol 15 ◽  
pp. B74
Author(s):  
S. Methot ◽  
M. Lavertu ◽  
J. Sun ◽  
F. Smaoui ◽  
M. Jean ◽  
...  

2006 ◽  
Vol 175 (4S) ◽  
pp. 323-324 ◽  
Author(s):  
Joseph Dall'era ◽  
Sweaty Koul ◽  
Jesse Mills ◽  
Jeremy Myers ◽  
Randall B. Meacham ◽  
...  

2020 ◽  
Vol 20 (11) ◽  
pp. 821-830
Author(s):  
Prasad Pofali ◽  
Adrita Mondal ◽  
Vaishali Londhe

Background: Current gene therapy vectors such as viral, non-viral, and bacterial vectors, which are used for cancer treatment, but there are certain safety concerns and stability issues of these conventional vectors. Exosomes are the vesicles of size 40-100 nm secreted from multivesicular bodies into the extracellular environment by most of the cell types in-vivo and in-vitro. As a natural nanocarrier, exosomes are immunologically inert, biocompatible, and can cross biological barriers like the blood-brain barrier, intestinal barrier, and placental barrier. Objective: This review focusses on the role of exosome as a carrier to efficiently deliver a gene for cancer treatment and diagnosis. The methods for loading of nucleic acids onto the exosomes, advantages of exosomes as a smart intercellular shuttle for gene delivery and therapeutic applications as a gene delivery vector for siRNA, miRNA and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and also the limitations of exosomes as a gene carrier are all reviewed in this article. Methods: Mostly, electroporation and chemical transfection are used to prepare gene loaded exosomes. Results: Exosome-mediated delivery is highly promising and advantageous in comparison to the current delivery methods for systemic gene therapy. Targeted exosomes, loaded with therapeutic nucleic acids, can efficiently promote the reduction of tumor proliferation without any adverse effects. Conclusion: In the near future, exosomes can become an efficient gene carrier for delivery and a biomarker for the diagnosis and treatment of cancer.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Dehua Lu ◽  
Yanpu Wang ◽  
Ting Zhang ◽  
Feng Wang ◽  
Kui Li ◽  
...  

Abstract Background Adoptive T cell transfer-based immunotherapy yields unsatisfactory results in the treatment of solid tumors, partially owing to limited tumor infiltration and the immunosuppressive microenvironment in solid tumors. Therefore, strategies for the noninvasive tracking of adoptive T cells are critical for monitoring tumor infiltration and for guiding the development of novel combination therapies. Methods We developed a radiolabeling method for cytotoxic T lymphocytes (CTLs) that comprises metabolically labeling the cell surface glycans with azidosugars and then covalently conjugating them with 64Cu-1,4,7-triazacyclononanetriacetic acid-dibenzo-cyclooctyne (64Cu-NOTA-DBCO) using bioorthogonal chemistry. 64Cu-labeled control-CTLs and ovalbumin-specific CTLs (OVA-CTLs) were tracked using positron emission tomography (PET) in B16-OVA tumor-bearing mice. We also investigated the effects of focal adhesion kinase (FAK) inhibition on the antitumor efficacy of OVA-CTLs using a poly(lactic-co-glycolic) acid (PLGA)-encapsulated nanodrug (PLGA-FAKi). Results CTLs can be stably radiolabeled with 64Cu with a minimal effect on cell viability. PET imaging of 64Cu-OVA-CTLs enables noninvasive mapping of their in vivo behavior. Moreover, 64Cu-OVA-CTLs PET imaging revealed that PLGA-FAKi induced a significant increase in OVA-CTL infiltration into tumors, suggesting the potential for a combined therapy comprising OVA-CTLs and PLGA-FAKi. Further combination therapy studies confirmed that the PLGA-FAKi nanodrug markedly improved the antitumor effects of adoptive OVA-CTLs transfer by multiple mechanisms. Conclusion These findings demonstrated that metabolic radiolabeling followed by PET imaging can be used to sensitively profile the early-stage migration and tumor-targeting efficiency of adoptive T cells in vivo. This strategy presents opportunities for predicting the efficacy of cell-based adoptive therapies and for guiding combination regimens. Graphic Abstract


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A549-A549
Author(s):  
Megan Wyatt ◽  
Stefanie Bailey ◽  
Michelle Nelson ◽  
Hannah Knochelmann ◽  
Aubrey Smith ◽  
...  

BackgroundThe inadequate ability of adoptively transferred T cells to eradicate solid tumors limits their use in treatments for patients afflicted with those cancers. Efforts to improve ACT for solid tumors aim to identify strategies that poise T cells for optimal response. We have previously identified a specific subset of CD4 T cells which express high levels of the ubiquitous ectoenzyme dipeptidyl peptidase-4 (DPP-4), also known as CD26, that produce a tremendous antitumor response in solid tumor models. We therefore sought to investigate the importance of CD26 on T cells destined for ACT.MethodsWe adoptively transferred tumor specific CD26+ T cells into melanoma tumor-bearing CD26-/- mice, and continuously blocked the CD26 enzymatic activity of the donor cells in vivo with sitagliptin, an established competitive inhibitor of CD26.ResultsTumors in sitagliptin-treated mice eventually reached study endpoint, while tumors untreated mice were regressed for 130+ days. Tumor infiltration of donor cells and host CD8 and CD4 cells was diminished with sitagliptin treatment. A 32-plex cytokine array of blood plasma revealed a diminished profile of cytokines and chemokines, indicating that the inflammatory response of the T cells was dampened with sitagliptin treatment. Further experiments characterized the ability of CD26+ T cells to respond to tumor trafficking signals with a transwell migration assay and found that sitagliptin treatment significantly impaired their migratory capacity. However, sitagliptin did not impair the ability of T cells to functionally respond to antigen.ConclusionsThese data suggest that the enzymatic activity of CD26 is important for the ability of T cells to migrate to the tumor site in order to mount an effective antitumor response. Further investigations into the mechanism behind the role of CD26 are ongoing.Ethics ApprovalThis study was approved by the Medical University of South Carolina’s IACUC, protocol #00488


Sign in / Sign up

Export Citation Format

Share Document