Waon Therapy Reduces Oxidative Stress Systemically, and Inhibits the Progression of Cardiac Dysfunction in TO-2 Cardiomyopathic Hamsters With Heart Failure

2011 ◽  
Vol 17 (9) ◽  
pp. S132-S133
Author(s):  
Yoshiyuki Ikeda ◽  
Masaaki Miyata ◽  
Chuwa Tei
2011 ◽  
Vol 109 (suppl_1) ◽  
Author(s):  
Yoshiyuki Ikeda ◽  
Masaaki Miyata ◽  
Yuichi Akasaki ◽  
Takahiro Miyauchi ◽  
Yuko Furusho ◽  
...  

Background: Oxidative stress is one of the most crucial factors that develop chronic heart failure (CHF), leading to cardiac apoptosis and fibrosis and vascular endothelial dysfunction. We have reported that Waon therapy, which is a form of thermal therapy using a far infrared-ray dry sauna at 60 degrees centigrade, improves cardiac and vascular endothelial functions and prognosis in patients with CHF. The aim of this study is to investigate whether Waon therapy reduces oxidative stress and prevents from developing cardiac dysfunction in CHF. Methods: Thirty-week old male TO-2 cardiomyopathic hamsters with CHF were divided into Waon therapy or control group. Waon therapy group underwent Waon therapy daily for 4 weeks. Control hamsters did not take any treatment. We examined the amounts of reactive oxygen species of serum, hearts and aortas using ELISA and immunohistochemistry. We measured left ventricular % fractional shortening (LV%FS), and performed TUNEL and Azan staining of hearts to assess cardiac function, apoptosis and fibrosis, respectively. Anti-oxidants and apoptotic and angiogenetic factors were assessed by Western blot. All examinations were performed after 4 weeks of treatment. Results: Four-week Waon therapy significantly decreased oxidative stress of serum, hearts and aortas compared to those of controls. Waon therapy significantly increased LV%FS and decreased cardiac apoptosis and fibrosis (LV%FS, Waon therapy: 23.3±4.3 vs. control: 16.5±4.2%, P<0.01, TUNEL positive nuclei, 22.0±2.6 vs. 49.3±7.2%, P<0.01, % fibrosis, 20.6±5.3 vs. 47.6±4.8%, P<0.01). Waon therapy significantly increased the expressions of manganese superoxide dismutase, heat shock protein 27 (HSP27) and HSP32 of hearts and aortas, which negatively modulate oxidative stress, compared to those of controls. Waon therapy significantly increased endothelial nitric oxide synthase and decreased plasminogen activator inhibitor-1 of aortas. In addition, Waon therapy significantly decreased Bax, cleaved caspase 3 and cytochrome c and increased Bcl-2 and hypoxia-inducible factor-1α of the failing hearts. Conclusions: Waon therapy reduces oxidative stress systemically and inhibits the progression of cardiac dysfuntion in TO-2 cardiomyopathic hamsters.


Antioxidants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 931
Author(s):  
Anureet K. Shah ◽  
Sukhwinder K. Bhullar ◽  
Vijayan Elimban ◽  
Naranjan S. Dhalla

Although heart failure due to a wide variety of pathological stimuli including myocardial infarction, pressure overload and volume overload is associated with cardiac hypertrophy, the exact reasons for the transition of cardiac hypertrophy to heart failure are not well defined. Since circulating levels of several vasoactive hormones including catecholamines, angiotensin II, and endothelins are elevated under pathological conditions, it has been suggested that these vasoactive hormones may be involved in the development of both cardiac hypertrophy and heart failure. At initial stages of pathological stimuli, these hormones induce an increase in ventricular wall tension by acting through their respective receptor-mediated signal transduction systems and result in the development of cardiac hypertrophy. Some oxyradicals formed at initial stages are also involved in the redox-dependent activation of the hypertrophic process but these are rapidly removed by increased content of antioxidants in hypertrophied heart. In fact, cardiac hypertrophy is considered to be an adaptive process as it exhibits either normal or augmented cardiac function for maintaining cardiovascular homeostasis. However, exposure of a hypertrophied heart to elevated levels of circulating hormones due to pathological stimuli over a prolonged period results in cardiac dysfunction and development of heart failure involving a complex set of mechanisms. It has been demonstrated that different cardiovascular abnormalities such as functional hypoxia, metabolic derangements, uncoupling of mitochondrial electron transport, and inflammation produce oxidative stress in the hypertrophied failing hearts. In addition, oxidation of catecholamines by monoamine oxidase as well as NADPH oxidase activation by angiotensin II and endothelin promote the generation of oxidative stress during the prolonged period by these pathological stimuli. It is noteworthy that oxidative stress is known to activate metallomatrix proteases and degrade the extracellular matrix proteins for the induction of cardiac remodeling and heart dysfunction. Furthermore, oxidative stress has been shown to induce subcellular remodeling and Ca2+-handling abnormalities as well as loss of cardiomyocytes due to the development of apoptosis, necrosis, and fibrosis. These observations support the view that a low amount of oxyradical formation for a brief period may activate redox-sensitive mechanisms, which are associated with the development of cardiac hypertrophy. On the other hand, high levels of oxyradicals over a prolonged period may induce oxidative stress and cause Ca2+-handling defects as well as protease activation and thus play a critical role in the development of adverse cardiac remodeling and cardiac dysfunction as well as progression of heart failure.


2011 ◽  
Vol 57 (14) ◽  
pp. E239
Author(s):  
Yoshiyuki Ikeda ◽  
Masaaki Miyata ◽  
Yuichi Akasaki ◽  
Takahiro Miyauchi ◽  
Yuko Furusho ◽  
...  

2012 ◽  
Vol 90 (8) ◽  
pp. 995-1004 ◽  
Author(s):  
Alison L. Müller ◽  
Darren Freed ◽  
Larry Hryshko ◽  
Naranjan S. Dhalla

It has become evident that protein degradation by proteolytic enzymes, known as proteases, is partly responsible for cardiovascular dysfunction in various types of heart disease. Both extracellular and intracellular alterations in proteolytic activities are invariably seen in heart failure associated with hypertrophic cardiomyopathy, dilated cardiomyopathy, hypertensive cardiomyopathy, diabetic cardiomyopathy, and ischemic cardiomyopathy. Genetic cardiomyopathy displayed in different strains of hamsters provides a useful model for studying heart failure due to either cardiac hypertrophy or cardiac dilation. Alterations in the function of several myocardial organelles such as sarcolemma, sarcoplasmic reticulum, myofibrils, mitochondria, as well as extracellular matrix have been shown to be due to subcellular remodeling as a consequence of changes in gene expression and protein content in failing hearts from cardiomyopathic hamsters. In view of the increased activities of various proteases, including calpains and matrix metalloproteinases in the hearts of genetically determined hamsters, it is proposed that the activation of different proteases may also represent an important determinant of subcellular remodeling and cardiac dysfunction associated with genetic cardiomyopathy.


2020 ◽  
Vol 127 (Suppl_1) ◽  
Author(s):  
Teruki Sato ◽  
Xiaoyan Yan ◽  
Hsiang-Chun Chang ◽  
Chen Chunlei ◽  
Jason S Shapiro ◽  
...  

Introduction: Sirtuins are NAD+ dependent deacetylases and critical regulators of energy metabolism and response to oxidative stress. Sirtuin2 (SIRT2) is a cytoplasmic member of the sirtuin family, and has been shown to regulate cellular iron homeostasis through deacetylation of nuclear factor erythroid-derived 2-related factor 2 (NRF2). However, whether SIRT2-NRF2 pathway is involved in the development of heart failure remains unknown. Methods and results: To investigate the functional role of SIRT2 in the response to cardiac stress, SIRT2 knockout (KO) mice and their littermate controls were subjected to pressure overload by transverse aortic constriction (TAC). SIRT2 KO had normal appearance and cardiovascular parameters at baseline. However, in response to TAC, Sirt2 -/- mice displayed resistance to the pathological hypertrophic response, whereas wild type (WT) mice developed cardiac hypertrophy and heart failure. In addition, SIRT2 KO mice displayed less cardiac damage after /reperfusion injury. SIRT2 knockdown in neonatal rat cardiomyocytes (NRCM) reduced reactive oxygen species (ROS) production and cell death after H2O2 treatment. Since cellular oxidative stress is one of major contributor of cardiac dysfunction caused by both I/R injury and pressure overload, we examined whether NRF2 is associated with SIRT2-mediated cardiac response to oxidative stress. Levels of NRF2 was upregulated in NRCM with SIRT2 knockdown and treated with H2O2 compared to wild type (WT) cells. Moreover, NRF2 is translocated into the nucleus and its anti-oxidant target proteins are upregulated in NRCM with SIRT2 knockdown. SIRT2 was also found to bind and deacetylate NRF2 directly as determined by co-immunoprecipitation studies. This led to a reduction of its nuclear translocation and transcriptional activity. Finally, knockdown of both SIRT2 and NRF2 diminished the effects of SIRT2 knockdown on ROS production and cellular damage. Conclusion: These results indicate that SIRT2 contributes to pressure overload and I/R injury induced heart impairment in mice, and promotes oxidative stress injury in cardiomyocytes via deacetylating NRF2 and altering its activity.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Heqin Zhan ◽  
Feng Huang ◽  
Qian Niu ◽  
Mingli Jiao ◽  
Xumeng Han ◽  
...  

Recent studies reported that miR-128 was differentially expressed in cardiomyocytes in response to pathologic stress. However, its function and mechanism remain to be fully elucidated. The aim of the present study was to investigate the role of miR-128 in chronic angiotensin II (Ang II) infusion-induced cardiac remodeling and its underlying mechanism. The cardiac remodeling and heart failure in vivo were established in C57BL/6 mice by chronic subcutaneous Ang II delivery. Knocking down miR-128 was conducted in the hearts of the mice by intravenous injection of HBAAV2/9-miR-128-GFP sponge (miR-128 inhibitor). In vitro experiments of cardiac hypertrophy, apoptosis, and aberrant autophagy were performed in cultured cells after Ang II treatment or transfection of miR-128 antagomir. Our results showed that chronic Ang II delivery for 28 days induced cardiac dysfunction, hypertrophy, fibrosis, apoptosis, and oxidative stress in the mice, while the miR-128 expression was notably enhanced in the left ventricle. Silencing miR-128 in the hearts of mice ameliorated Ang II-induced cardiac dysfunction, hypertrophy, fibrosis apoptosis, and oxidative stress injury. Moreover, Ang II induced excessive autophagy in the mouse hearts, which was suppressed by miR-128 knockdown. In cultured cells, Ang II treatment induced a marked elevation in the miR-128 expression. Downregulation of miR-128 in the cells by transfection with miR-128 antagomir attenuated Ang II-induced apoptosis and oxidative injury probably via directly targeting on the SIRT1/p53 pathway. Intriguingly, we found that miR-128 inhibition activated PIK3R1/Akt/mTOR pathway and thereby significantly damped Ang II-stimulated pathological autophagy in cardiomyocytes, which consequently mitigated cell oxidative stress and apoptosis. In conclusion, downregulation of miR-128 ameliorates Ang II-provoked cardiac oxidative stress, hypertrophy, fibrosis, apoptosis, and dysfunction in mice, likely through targeting on PIK3R1/Akt/mTORC1 and/or SIRT1/p53 pathways. These results indicate that miR-128 inhibition might be a potent therapeutic strategy for maladaptive cardiac remodeling and heart failure.


2020 ◽  
Vol 18 (3) ◽  
pp. 260-265
Author(s):  
Xu Lin ◽  
Zheng Xiaojun ◽  
Lv Heng ◽  
Mo Yipeng ◽  
Tong Hong

The purpose of this study was to evaluate the protective effect of swertiamarin on heart failure. To this end, a rat model of heart failure was established via left coronary artery ligation. Infarct size of heart tissues was determined using triphenyl tetrazolium chloride staining. Echocardiography was performed to evaluate cardiac function by the determination of ejection fraction, left ventricular internal dimension in diastole and left ventricular internal dimension in systole. The effect of swertiamarin on oxidative stress was evaluated via enzyme-linked immunosorbent assay. The mechanism was evaluated using western blot. Administration of swertiamarin reduced the infarct size of heart tissues in rat models with heart failure. Moreover, swertiamarin treatment ameliorated the cardiac function, increased ejection fraction and fractional shortening, decreased left ventricular internal dimension in diastole and left ventricular internal dimension in systole. Swertiamarin improved oxidative stress with reduced malondialdehyde, while increased superoxide dismutase, glutathione, and GSH peroxidase. Furthermore, nuclear-factor erythroid 2-related factor 2, heme oxygenase and NAD(P)H dehydrogenase (quinone 1) were elevated by swertiamarin treatment in heart tissues of rat model with heart failure. Swertiamarin alleviated heart failure through suppression of oxidative stress response via nuclear-factor erythroid 2-related factor 2/heme oxygenase-1 pathway providing a novel therapeutic strategy for heart failure.


Sign in / Sign up

Export Citation Format

Share Document