Sugar-binding sites on the surface of the carbohydrate-binding module of CBH I from Trichoderma reesei

2011 ◽  
Vol 346 (6) ◽  
pp. 839-846 ◽  
Author(s):  
Letizia Tavagnacco ◽  
Philip E. Mason ◽  
Udo Schnupf ◽  
Felicia Pitici ◽  
Linghao Zhong ◽  
...  
2020 ◽  
Author(s):  
Yuki Tokunaga ◽  
Takashi Nagata ◽  
Keiko Kondo ◽  
Masato Katahira ◽  
Takashi Watanabe

Abstract Background: Highly efficient enzymatic saccharification of pretreated lignocellulose is a primary key step in achieving lignocellulosic biorefinery. Cellobiohydrolase I (Cel7A) secreted by Trichoderma reesei is an industrially used cellulase possessing carbohydrate binding module 1 (TrCBM1) as the C-terminal domain. Non-productive binding of TrCBM1 to lignin significantly decreases enzymatic saccharification efficiency and enhance cost of biomass conversion due to required additional enzymes. Understanding of the interaction mechanism between lignin and TrCBM1 is essentially required to realize cost-effective biofuels production, but the binding sites in lignin have not been clearly elucidated. Results: Three types of 13C-labeled b-O-4 lignin oligomer models were synthesized and characterized. The 2D 1H-13C HSQC spectra of the 13C-labeled lignin models exhibited that 13C-labels were correctly incorporated in the (1) aromatic rings and b positions, (2) a positions, and (3) methoxy groups, respectively. The TrCBM1 binding sites in lignin were analyzed by observing NMR chemical shift perturbations (CSPs) using the synthetic 13C-labeled b-O-4 lignin oligomer models. Obvious CSPs were observed in signals from the aromatic regions in oligomers bound to TrCBM1, whereas perturbations in the signals from aliphatic regions and methoxy groups were insignificant. This indicated that hydrophobic interactions and p–p stacking were dominating factors in non-productive binding. The synthetic lignin models have two configurations whose terminal units were differently aligned and donated C(I) and C(II). The C(I) ring showed remarkable perturbation compared with C(II), which indicated that binding of TrCBM1 is evidently affected by configuration of lignin models. Long-chain lignins (DP 4.16–4.70) clearly bound to TrCBM1. Interactions with short-chain lignins (DP 2.64–3.12) were insignificant, indicating that a DP greater than 4 was necessary for TrCBM1 binding. Conclusion: The CSP analysis using 13C-labeled b-O-4 lignin oligomer models enabled us to identify TrCBM1 binding sites in lignin at the atomic level. This specific interaction analysis will lead to new molecular design of cellulase having controlled affinity to cellulose and lignin for cost-effective biorefinery process.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Yuki Tokunaga ◽  
Takashi Nagata ◽  
Keiko Kondo ◽  
Masato Katahira ◽  
Takashi Watanabe

Abstract Background Highly efficient enzymatic saccharification of pretreated lignocellulose is a key step in achieving lignocellulosic biorefinery. Cellobiohydrolase I (Cel7A) secreted by Trichoderma reesei is an industrially used cellulase that possesses carbohydrate-binding module 1 (TrCBM1) at the C-terminal domain. The nonproductive binding of TrCBM1 to lignin significantly decreases the enzymatic saccharification efficiency and increases the cost of biomass conversion because of the additionally required enzymes. Understanding the interaction mechanism between lignin and TrCBM1 is essential for realizing a cost-effective biofuel production; however, the binding sites in lignin have not been clearly elucidated. Results Three types of 13C-labeled β-O-4 lignin oligomer models were synthesized and characterized. The 2D 1H–13C heteronuclear single-quantum correlation (HSQC) spectra of the 13C-labeled lignin models confirmed that the three types of the 13C labels were correctly incorporated in the (1) aromatic rings and β positions, (2) α positions, and (3) methoxy groups, respectively. The TrCBM1-binding sites in lignin were analyzed by observing NMR chemical shift perturbations (CSPs) using the synthetic 13C-labeled β-O-4 lignin oligomer models. Obvious CSPs were observed in signals from the aromatic regions in oligomers bound to TrCBM1, whereas perturbations in the signals from aliphatic regions and methoxy groups were insignificant. These findings indicated that hydrophobic interactions and π–π stacking were dominating factors in nonproductive binding. The synthetic lignin models have two configurations whose terminal units were differently aligned and donated C(I) and C(II). The C(I) ring showed remarkable perturbation compared with the C(II), which indicated that the binding of TrCBM1 was markedly affected by the configuration of the lignin models. The long-chain lignin models (degree of polymerization (DP) 4.16–4.70) clearly bound to TrCBM1. The interactions of TrCBM1 with the short-chain lignin models (DP 2.64–3.12) were insignificant, indicating that a DP greater than 4 was necessary for TrCBM1 binding. Conclusion The CSP analysis using 13C-labeled β-O-4 lignin oligomer models enabled the identification of the TrCBM1 binding sites in lignins at the atomic level. This specific interaction analysis will provide insights for new molecular designs of cellulase having a controlled affinity to cellulose and lignin for a cost-effective biorefinery process.


2006 ◽  
Vol 396 (3) ◽  
pp. 469-477 ◽  
Author(s):  
Wei-I Chou ◽  
Tun-Wen Pai ◽  
Shi-Hwei Liu ◽  
Bor-Kai Hsiung ◽  
Margaret D.-T. Chang

The starch-hydrolysing enzyme GA (glucoamylase) from Rhizopus oryzae is a commonly used glycoside hydrolase in industry. It consists of a C-terminal catalytic domain and an N-terminal starch-binding domain, which belong to the CBM21 (carbohydrate-binding module, family 21). In the present study, a molecular model of CBM21 from R. oryzae GA (RoGACBM21) was constructed according to PSSC (progressive secondary structure correlation), modified structure-based sequence alignment, and site-directed mutagenesis was used to identify and characterize potential ligand-binding sites. Our model suggests that RoGACBM21 contains two ligand-binding sites, with Tyr32 and Tyr67 grouped into site I, and Trp47, Tyr83 and Tyr93 grouped into site II. The involvement of these aromatic residues has been validated using chemical modification, UV difference spectroscopy studies, and both qualitative and quantitative binding assays on a series of RoGACBM21 mutants. Our results further reveal that binding sites I and II play distinct roles in ligand binding, the former not only is involved in binding insoluble starch, but also facilitates the binding of RoGACBM21 to long-chain soluble polysaccharides, whereas the latter serves as the major binding site mediating the binding of both soluble polysaccharide and insoluble ligands. In the present study we have for the first time demonstrated that the key ligand-binding residues of RoGACBM21 can be identified and characterized by a combination of novel bioinformatics methodologies in the absence of resolved three-dimensional structural information.


2004 ◽  
Vol 382 (2) ◽  
pp. 667-675 ◽  
Author(s):  
Hiroaki TATENO ◽  
Harry C. WINTER ◽  
Irwin J. GOLDSTEIN

Lectin from the mushroom Polyporus squamosus (PSL) has a unique carbohydrate-binding specificity for sialylated glycoconjugates containing Neu5Acα2,6Galβ1,4Glc/GlcNAc trisaccharide sequences of asparagine-linked glycoproteins. In the present study, we elucidate the molecular basis for its binding specificity as well as establish a consistent source of this useful lectin using a bacterial expression system. cDNA cloning revealed that PSL contains a ricin B chain-like (QXW)3 domain at its N-terminus that is composed of three homologous subdomains (α, β and γ). A recombinant lectin was expressed in Escherichia coli as a fully active, soluble form. It agglutinated rabbit erythrocytes and showed the highest affinity for Neu5Acα2,6Galβ1,4GlcNAc, but not for the sialyl α2,3-linked isomer. We also investigated the structure–function relationship of PSL. A monomeric C-terminal deletion mutant lacking 40% of the lectin's molecular mass retained sugar-binding activity, indicating that the carbohydrate-binding sites are situated in the N-terminal portion of the lectin, whereas the C-terminal portion probably functions in oligomerization and structural stabilization. Mutant constructs that have single amino acid substitutions in the putative sugar-binding sites, based on sequence alignment with the ricin B-chain, indicate that the β and γ subdomains are most probably sugar-binding sites. The recombinantly expressed lectin will be a valuable reagent for the detection of the Neu5Acα2,6Galβ1,4GlcNAc sequence of asparagine-linked glycans.


Sign in / Sign up

Export Citation Format

Share Document