Assessing two methods of defining rainfall intensity and duration thresholds for shallow landslides in data-scarce catchments of the Colombian Andean Mountains

CATENA ◽  
2021 ◽  
Vol 206 ◽  
pp. 105563
Author(s):  
Roberto J. Marin ◽  
María Fernanda Velásquez ◽  
Edwin F. García ◽  
Massimiliano Alvioli ◽  
Edier Aristizábal
2021 ◽  
Author(s):  
Paolo Frattini ◽  
Gianluca Sala ◽  
Camilla Lanfranconi ◽  
Giulia Rusconi ◽  
Giovanni Crosta

<p>Rainfall is one of the most significant triggering factors for shallow landslides. The early warning for such phenomena requires the definition of a threshold based on a critical rainfall condition that may lead to diffuse landsliding. The developing of these thresholds is frequently done through empirical or statistical approaches that aim at identifying thresholds between rainfall events that triggered or non-triggered landslides. Such approaches present several problems related to the identification of the exact amount of rainfall that triggered landslides, the local geo-environmental conditions at the landslide site, and the minimum rainfall amount used to define the non-triggering events. Furthermore, these thresholds lead to misclassifications (false negative or false positive) that always induce costs for the society. The aim of this research is to address these limitations, accounting for classification costs in order to select the optimal thresholds for landslide risk management.</p><p>Starting from a database of shallow landslides occurred during five regional-scale rainfall events in the Italian Central Alps, we extracted the triggering rainfall intensities by adjusting rain gouge data with weather radar data. This adjustment significantly improved the information regarding the rainfall intensity at the landslide site and, although an uncertainty related to the exact timing of occurrence has still remained. Therefore, we identified the rainfall thresholds through the Receiver Operating Characteristic (ROC) approach, by identifying the optimal rainfall intensity that separates triggering and non-triggering events. To evaluate the effect related to the application of different minimum rainfall for non-triggering events, we have adopted three different values obtaining similar results, thus demonstrating that the ROC approach is not sensitive to the choice of the minimum rainfall threshold. In order to include the effect of misclassification costs we have developed cost-sensitive rainfall threshold curves by using cost-curve approach (Drummond and Holte 2000). As far as we know, this is the first attempt to build a cost-sensitive rainfall threshold for landslides that allows to explicitly account for misclassification costs. For the development of the cost-sensitive threshold curve, we had to define a reference cost scenario in which we have quantified several cost items for both missed alarms and false alarms. By using this scenario, the cost-sensitive rainfall threshold results to be lower than the ROC threshold to minimize the missed alarms, the costs of which are seven times greater than the false alarm costs. Since the misclassification costs could vary according to different socio-economic contexts and emergency organization, we developed different extreme scenarios to evaluate the sensitivity of misclassification costs on the rainfall thresholds. In the scenario with maximum false-alarm cost and minimum missed-alarm cost, the rainfall threshold increases in order to minimize the false alarms. Conversely, the rainfall thresholds decreases in the scenario with minimum false-alarm cost and maximum missed-alarm costs. We found that the range of variation between the curves of these extreme scenarios is as much as half an order of magnitude.</p>


2014 ◽  
Vol 14 (9) ◽  
pp. 2399-2408 ◽  
Author(s):  
G. Vessia ◽  
M. Parise ◽  
M. T. Brunetti ◽  
S. Peruccacci ◽  
M. Rossi ◽  
...  

Abstract. Over the last 40 years, many contributions have identified empirical rainfall thresholds (e.g. rainfall intensity (I) vs. rainfall duration (D), cumulated rainfall vs. rainfall duration (ED), cumulated rainfall vs. rainfall intensity (EI)) for the possible initiation of shallow landslides, based on local and global inventories. Although different methods to trace the threshold curves have been proposed and discussed in literature, a systematic study to develop an automated procedure to select the rainfall event responsible for the landslide occurrence has only rarely been addressed. Objective criteria for estimating the rainfall responsible for the landslide occurrence play a prominent role on the threshold values. In this paper, two criteria for the identification of the effective rainfall events are presented. The first criterion is based on the analysis of the time series of rainfall mean intensity values over 1 month preceding the landslide occurrence. The second criterion is based on the analysis of the trend in the time function of the cumulated mean intensity series calculated from the rainfall records measured through rain gauges. The two criteria have been implemented in an automated procedure that is written in the R language. A sample of 100 shallow landslides collected in Italy from 2002 to 2012 was used to calibrate the procedure. The cumulated event rainfall (E) and duration (D) of rainfall events that triggered the documented landslides are calculated through the new procedure and are fitted with power law in the D, E diagram. The results are discussed by comparing the D, E pairs calculated by the automated procedure and the ones by the expert method.


2020 ◽  
Author(s):  
Pasquale Marino ◽  
Roberto Greco ◽  
David James Peres ◽  
Thom A. Bogaard

<p>Prediction of rainfall-induced landslides is often entrusted to the definition of empirical thresholds (usually expressed in terms of rainfall intensity and duration), linking the precipitation to the triggering of landslides. However, rainfall intensity-duration thresholds do not exploit the knowledge of the hydrological processes developing in the slope, so they tend to generate false and missed alarms. Rainfall-induced shallow landslides usually occur in initially unsaturated soil covers following an increase of pore water pressure, due to the increase of soil moisture, caused by large and persistent rainfall. Clearly, it should be possible to use soil moisture for landslide prediction. Recently, Bogaard & Greco (2018) proposed the cause-trigger conceptual framework to develop hydro-meteorological thresholds that combine the antecedent causal factors and the actual trigger connected with landslide initiation. In fact, in some regions where rainfall-induced shallow landslides are particularly dangerous and pose a serious risk to people and infrastructures, the antecedent saturation is the predisposing factor, while the actual landslide triggering is associated with the hydrologic response to the recent and incoming precipitation. In fact, numerous studies already tried to introduce, directly or with models, the effects of antecedent soil moisture content in the empirical thresholds for improving landslide forecasting. Soil moisture can be measured locally, by a range of on-site measurement techniques, or remotely, from satellites or airborne. On-site measurements have proved promising in improving the performance of thresholds for landslide early warning. On-site data are accurate but sparse, so there is an increasing interest on the possible use of remotely sensed data. And in fact, recent research has shown that they can provide useful information for landslide prediction at regional scale, despite their coarse resolution and inherent uncertainty.</p><p>However, while remote sensing techniques provide near-surface (5cm depth) soil moisture estimate, the depth involved in shallow landslide is typically 1-2m below the surface. This depth, overlapping with the root penetration zone, is influenced by antecedent precipitation, soil texture, vegetation and, so, it is very difficult to find a clear relationship with near-surface soil moisture. Many studies have been conducted to provide root-zone soil moisture through physically-based approaches and data driven methods, data assimilation schemes, and satellite information.</p><p>In this study, the question if soil moisture information derived from current or future satellite products can improve landslide hazard prediction, and to what extent, is investigated. Hereto, real-world landslide and hydrology information, from two sites of Southern Italy characterized by frequent shallow landslides (Peloritani mountains, in Sicily, and Partenio mountains, in Campania), is analyzed. To get datasets long enough to carry out statistical analyses, synthetic time series of rainfall and soil cover response have been generated, with the application of a stochastic rainfall model and a physically based infiltration model, for both the sites. Near-surface and root-zone soil moisture have been tested, accounting also for effects of uncertainty and of coarse spatial and temporal resolution of measurements. The obtained results show that, in all cases, soil moisture information allows building hydro-meteorological thresholds for landslide prediction, significantly outperforming the currently adopted purely meteorological thresholds.</p><p> </p><p> </p>


Landslides ◽  
2007 ◽  
Vol 5 (1) ◽  
pp. 3-17 ◽  
Author(s):  
Fausto Guzzetti ◽  
Silvia Peruccacci ◽  
Mauro Rossi ◽  
Colin P. Stark

DYNA ◽  
2019 ◽  
Vol 86 (210) ◽  
pp. 312-322 ◽  
Author(s):  
Roberto J. Marín ◽  
Edwin García-Aristizábal ◽  
Edier Aristizábal

An analysis of the rainfall conditions and the influence of the infiltration processes on the slope stability are important in tropical mountain terrains due to the wide occurrence of rainfall-induced landslides. Distributed physical-based models can be coupled with techniques that relate the factor of safety with rainfall thresholds associated with the occurrence of this phenomenon. This study presents a methodology that determines the thresholds of rainfall intensity and duration, for the prediction of shallow landslides, using a distributed physical model called TRIGRS. In the analysis, it is used a percentage of the critical area of failure defined for a study area. The conditions of mean intensity and duration of rain that induce this failing area to be reached are adjusted to a potential equation, within certain ranges of duration and intensity. The model is used in a sub-basin of the Valle de Aburrá (Colombia) and the results are compared with rainfall thresholds defined with another distributed physical model. The obtained results reaffirm that the conditions of rainfall intensity and duration that trigger landslides in a region exhibit scaling properties determined by relationships of potential equations, like those obtained by other researchers in different places of the world.


2021 ◽  
Vol 11 (24) ◽  
pp. 11652
Author(s):  
Yan Liu ◽  
Zhiyuan Deng ◽  
Xiekang Wang

Landslides are a serious geohazard worldwide, causing many casualties and considerable economic losses every year. Rainfall-induced shallow landslides commonly occur in mountainous regions. Many factors affect an area’s susceptibility, such as rainfall, the soil, and the slope. In this paper, the effects of rainfall intensity, rainfall pattern, slope gradient, and soil type on landslide susceptibility are studied. Variables including soil volumetric water content, matrix suction, pore water pressure, and the total stress throughout the rainfall were measured. The results show that, under the experimental conditions of this paper, no landslides occurred on a 5° slope. On a 15° slope, when the rainfall intensity was equal to or less than 80 mm/h with a 1 h duration, landslides also did not happen. With a rainfall intensity of 120 mm/h, the rainfall pattern in which the intensity gradually diminishes could not induce landslides. Compared with fine soils, coarser soils with gravels were found to be prone to landslides. As the volumetric water content rose, the matrix suction declined from the time that the level of infiltration reached the position of the matrix. The pore water pressure and the total stress both changed drastically either immediately before or after the landslide. In addition, the sediment yield depended on the above factors. Steeper slopes, stronger rainfall, and coarser soils were all found to increase the amount of sediment yield.


2018 ◽  
Vol 18 (9) ◽  
pp. 2367-2386 ◽  
Author(s):  
Anna Roccati ◽  
Francesco Faccini ◽  
Fabio Luino ◽  
Laura Turconi ◽  
Fausto Guzzetti

Abstract. In recent decades, the Entella River basin, in the Liguria Apennines, northern Italy, was hit by numerous intense rainfall events that triggered shallow landslides and earth flows, causing casualties and extensive damage. We analyzed landslide information obtained from different sources and rainfall data recorded in the period 2002–2016 by rain gauges scattered throughout the catchment, to identify the event rainfall duration, D (in h), and rainfall intensity, I (in mm h−1), that presumably caused the landslide events. Rainfall-induced landslides affected the whole catchment area, but were most frequent and abundant in the central part, where the three most severe events hit on 23–24 November 2002, 21–22 October 2013 and 10–11 November 2014. Examining the timing and location of the slope failures, we found that the rainfall-induced landslides occurred primarily at the same time or within 6 h from the maximum peak rainfall intensity, and at or near the geographical location where the rainfall intensity was largest. Failures involved mainly forested and natural surfaces, and secondarily cultivated and terraced slopes, with different levels of maintenance. Man-made structures frequently characterize the landslide source areas. Adopting a frequentist approach, we define the event rainfall intensity–event duration (ID) threshold for the possible initiation of shallow landslides and hyper-concentrated flows in the Entella River basin. The threshold is lower than most of the curves proposed in the literature for similar mountain catchments, local areas and single regions in Italy. The result suggests a high susceptibility to rainfall-induced shallow landslides of the Entella catchment due to its high-relief topography, geological and geomorphological settings, meteorological and rainfall conditions, and human interference. Analysis of the antecedent rainfall conditions for different periods, from 3 to 15 days, revealed that the antecedent rainfall did not play a significant role in the initiation of landslides in the Entella catchment. We expect that our findings will be useful in regional to local landslides early warning systems, and for land planning aimed at reducing landslide risk in the study area.


Author(s):  
Maurizio Lazzari ◽  
Marco Piccarreta ◽  
Salvatore Manfreda

Abstract. Rainfall-triggered shallow landslides have caused losses of human life and millions of euros in damage to property in all parts of the world. The need to prevent such phenomena combined with the difficulty to describe the geo-physical processes over large scales led to the adoption of empirical rainfall thresholds derived from the observed relationship between rainfall intensity/duration and landslide occurrence. These thresholds are generally obtained neglecting the role of the antecedent moisture conditions that should be taken into consideration. In the present manuscript, we explored the role of antecedent soil moisture on the critical rainfall intensity–duration thresholds highlighting its critical impact. Therefore, traditional approaches that neglect such parameter may have a limited value in the early-warning systems. This study was carried out using a record of 326 landslides occurred in the last 18 years in the Basilicata region (southern Italy). Besides the ordinary data (i.e. rainstorm intensity and duration), we also derived the antecedent moisture conditions using a parsimonious hydrological model.


Sign in / Sign up

Export Citation Format

Share Document