scholarly journals The Effects of Rainfall, Soil Type and Slope on the Processes and Mechanisms of Rainfall-Induced Shallow Landslides

2021 ◽  
Vol 11 (24) ◽  
pp. 11652
Author(s):  
Yan Liu ◽  
Zhiyuan Deng ◽  
Xiekang Wang

Landslides are a serious geohazard worldwide, causing many casualties and considerable economic losses every year. Rainfall-induced shallow landslides commonly occur in mountainous regions. Many factors affect an area’s susceptibility, such as rainfall, the soil, and the slope. In this paper, the effects of rainfall intensity, rainfall pattern, slope gradient, and soil type on landslide susceptibility are studied. Variables including soil volumetric water content, matrix suction, pore water pressure, and the total stress throughout the rainfall were measured. The results show that, under the experimental conditions of this paper, no landslides occurred on a 5° slope. On a 15° slope, when the rainfall intensity was equal to or less than 80 mm/h with a 1 h duration, landslides also did not happen. With a rainfall intensity of 120 mm/h, the rainfall pattern in which the intensity gradually diminishes could not induce landslides. Compared with fine soils, coarser soils with gravels were found to be prone to landslides. As the volumetric water content rose, the matrix suction declined from the time that the level of infiltration reached the position of the matrix. The pore water pressure and the total stress both changed drastically either immediately before or after the landslide. In addition, the sediment yield depended on the above factors. Steeper slopes, stronger rainfall, and coarser soils were all found to increase the amount of sediment yield.

1979 ◽  
Vol 16 (1) ◽  
pp. 121-139 ◽  
Author(s):  
D. G. Fredlund

A practical science has not been fully developed for unsaturated soils for two main reasons. First, there has been the lack of an appropriate science with a theoretical base. Second, there has been the lack of an appropriate technology to render engineering practice financially viable.This paper presents concepts that can be used to develop an appropriate engineering practice for unsaturated soils. The nature of an unsaturated soil is first described along with the accompanying stress conditions. The basic equations related to mechanical properties are then proposed. These are applied to practical problems such as earth pressure, limiting equilibrium, and volume change.An attempt is made to demonstrate the manner in which saturated soil mechanics must be extended when a soil is unsaturated. Two variables are required to describe the stress state of an unsaturated soil (e.g., (σ – ua) and (ua – uW). There is a smooth transition from the unsaturated case to the saturated case since the pore-air pressure becomes equal to the pore-water pressure as the degree of saturation approaches 100%. Therefore, the matrix suction (i.e., (ua – uW) goes to 0 and the pore-water pressure can be substituted for the pore-air pressure (i.e., (σ – uW)).The complete volumetric deformation of an unsaturated soil requires two three-dimensional constitutive surfaces. These converge to one two-dimensional relationship for a saturated soil. The shear strength for an unsaturated soil is a three-dimensional surface that reduces to the conventional Mohr–Coulomb envelope for a saturated soil.The manner of applying the volumetric deformation equations and the shear strength equation to practical problems is demonstrated. For earth pressure and limiting equilibrium problems, the unsaturated soil can be viewed as a saturated soil with an increased cohesion. The increase in cohesion is proportional to the matrix suction of the soil. For volume change problems it is necessary to have an indication of the relationship between the various soil moduli.There is a need for further experimental studies and case histories to substantiate the proposed concepts and theories.


2021 ◽  
Author(s):  
Fei Tan

Abstract To investigate the response law and failure process of slopes in fully weathered granites under precipitation infiltration, a typical fully weathered granite slope is selected for sampling in Fengkai, Guangdong. The physical simulation experimental study of rainfall-induced landslide is conducted, in which Weber criterion is used as the similarity criterion for precipitation. The research results reveal that under precipitation infiltration, the fully weathered granite slope responds quickly. Further, the water content increases sharply, and the matrix suction quickly dissipates. After dissipation, the matrix suction transforms into pore water pressure, which accelerates the deformation of the slope. The wet peak has a large infiltration depth in the slope, and the acceleration of deep part is lower than that of the shallow part. Under the action of precipitation, the fully weathered granite model undergoes four stages of failure. Firstly, gullies and cracks appear. Secondly, cracks propagate and link up. Then, the soil on the slope surface swells and ruptures. Finally, the slope slides locally until the entire slope creeps, collapses, and transforms into a "soil flow." Based on the analysis of precipitation similarity, the landslide will be triggered in fully weathered granite slope by precipitation when the precipitation intensity comes up to 155 mm/d, and the landslide occurs at an accumulated precipitation of 304 mm. Overall, the results can provide a reliable theoretical basis and abundant experimental data for the prevention, monitoring, and forecasting of geological disasters in granitic areas.


Author(s):  
Yan Liu ◽  
Zhiyuan Deng ◽  
Xiekang Wang

Landslides are serious geological hazards that become a disaster worldwide, causing a large number of casualties and economic losses every year. There are many factors affecting landslide susceptibility, such as rainfall, soil and slope. Each of them has an important role in the process of slope losing stability. In this paper, the effects of rainfall intensity, rainfall pattern, slope gradient and soil type on landslide susceptibility are studied. In the process of rainfall-induced landslide, the relevant physical quantities of soil changes continuously. Their values and processes are closely related to the time of landslide occurrence. Hence, the variation of soil volumetric water content, matrix suction, pore water pressure and total stress throughout the rainfall are measured. As the results, soil type, slope gradient and rainfall intensity have a large influence on landslide susceptibility. The occurrence of landslides has a prerequisite that the slope is greater than or equal to 15°. The rainfall intensity needs to be not less than 80 mm/h. The difference of rainfall pattern also affects the landslide susceptibility. The rainfall pattern with rainfall intensity peak at the later stage is more likely to induce landslide. Coarser soils with gravels are prone to landslides when other conditions are the same. Steeper slopes, stronger rainfall, and coarser soils can all increase the amount of sediment yield.


2015 ◽  
Vol 52 (12) ◽  
pp. 1901-1912 ◽  
Author(s):  
James P. Doherty ◽  
Alsidqi Hasan ◽  
Gonzalo H. Suazo ◽  
Andy Fourie

This paper presents in-stope measurements of total stress and pore-water pressure at strategic locations within three underground stopes at the Raleigh mine site (Western Australia) that were filled with cemented paste backfill (CPB). The three stopes were very similar in shape. Key differences among the stopes were the filling and resting schedules, the barricade drainage systems used, and the cement content of the CPB. Data from the stopes are compared to determine which controllable factors most significantly influence barricade pressures during and after filling. The most significant factor was the scheduling of rest periods between filling, with even very short pauses in filling dramatically reducing the rate of increase of pore-water pressure and total stress with increasing height of fill.


2014 ◽  
Vol 51 (10) ◽  
pp. 1165-1177 ◽  
Author(s):  
F.R. Harnas ◽  
H. Rahardjo ◽  
E.C. Leong ◽  
J.Y. Wang

The performance of a capillary barrier cover as a cover system is affected by the ability of the capillary barrier to store water. To increase the water storage of a capillary barrier cover, the dual capillary barrier (DCB) concept is proposed. The objective of this paper is to investigate the water storage of the proposed DCB as compared to the storage of a traditional single capillary barrier (SCB). The investigation is conducted using two one-dimensional infiltration column tests under different rainfall conditions. The results show that a DCB stores more water as compared to SCB. The results show that the fine-grained layers of a DCB have higher volumetric water contents during drainage as compared to that of the fine-grained layer of an SCB. The higher volumetric water content is caused by the fact that the thickness of the layers in a DCB corresponds to a pore-water pressure head range where the material has the highest volumetric water content. In addition, a slower drainage rate is resulted from additional layering in a DCB.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Kaisheng Chen

By embedding water content sensors and pore water pressure sensors inside the red clay slope on-site in Guiyang, Guizhou, shear tests were performed on soil samples at different depths of the slope under different weather. The changes of water content, pore water pressure, and shear strength index of the slope inside the slope under the influence of the atmosphere were tracked and tested, and the failure characteristics and evolution of the red clay slope were analyzed. It is believed that the depth of influence of the atmosphere on red clay slopes is about 0.7 m, rainfall is the most direct climatic factor leading to the instability of red clay slopes, and the evaporation effect is an important prerequisite for the catastrophe of red clay slopes. The cohesion and internal friction angle of the slope soil have a good binary quadratic function relationship with the water content and density. The water content and density can be used to calculate the cohesion and internal friction angle. Failure characteristics of red clay slopes: the overall instability failure is less, mainly surface failure represented by gullies and weathering and spalling, and then gradually evolved into shallow instability failure represented by collapse and slump. The damage evolution law is as follows: splash corrosion and surface corrosion stage⟶ fracture development stage⟶ gully formation stage⟶ gully development through stage⟶ local collapse stage⟶ slope foot collapse stage.


2018 ◽  
Vol 7 (4.20) ◽  
pp. 95
Author(s):  
Aqeel Al-Adili ◽  
Rasha H. Abdul-Amir ◽  
Osamah Hassan Chfat

In this research the work methodology include the software program SEEP/W routine of the GEOSLOPE 2012; which was used to simulate and analyze the vertical drainage of the pavement cross section using steady-state and transient analysis. A laboratory model consisting of typical structure layers of flexible pavement was considered in this research with a 2% slope with the influence of three different rain intensities (30mm/min, 60mm/min and 90mm/min); in which each one has a duration differs from the other. The results indicated that the value of the pore-water pressure in the surface layer resulting from 90 mm/min rainfall intensity is 83.65% greater than the pressure generated by the 60mm/min intensity of rain and 91.076% greater than the pressure produced from 30mm/min intensity. The average of accumulation water produced by the 30mm/min rainfall intensity in the pavement structure is 44.73 % greater than the average of accumulation of water from the 60mm/min intensity and 77.85% higher than the 90mm/min intensity of rain. The water flux through the pavement cross section during the rainy period of 30 mm/min was 8.42% higher than the water flux of 60 mm/min and 49.82% of the water flux of 90 mm/min intensity of rain.  


Author(s):  
Osama Drbe

Piles are used to transfer loads of structures to deeper and stronger soil layers through skin friction and/or end bearing. Surcharge loads, site grading, or dewatering may induce downward movement of soil adjacent to piles installed in a compressible medium. This movement creates negative skin friction stresses acting downward at the pile-soil interface, which applies additional loads “drag forces” to the pile causing a maximum axial load in the pile shaft at the “neutral plane”. To evaluate the development of drag forces, a comprehensive field monitoring program was conducted over four years for three instrumented abutment H-piles as part of a three-span bridge project. The soil settlement and changes in pore water pressure in the soil adjacent to the piles due to the construction of an approach embankment were monitored using multiple-point extensometers and vibrating wire piezometers. The piles’ elastic settlement and strains were measured using single-point extensometers and vibrating wire strain gauges. The field measurements are presented and discussed in terms of responses time histories and load distribution along one pile shaft. In addition, the calculated forces from vibrating wire strain gauges are compared with the unified design method prediction considering the total stress method (α-method) for cohesive soils. The results show that the maximum drag force was developed after the complete dissipation of excess pore water pressure and that the location of neutral plane varied during the embankment construction stages. Employing the total stress method in the unified design method provided a reasonable prediction of the drag force and the neutral plane’s location.


2020 ◽  
Vol 857 ◽  
pp. 383-393
Author(s):  
Mahdi O. Karkush ◽  
Amer G. Jihad

This study focuses on investigating the impacts of kerosene on the physical, mechanical, and chemical characteristics of clay soil. The soils specimens are contaminated artificially with six ratios of kerosene (5, 10, 20, 30, 40, and 50) % calculated according to the dry weight of soil. The artificial contamination includes air drying of the disturbed soil, then placed in plastic containers and mixed with the field water content and the specified concentration of kerosene to ensure getting homogenous contaminated soil specimens. The contaminated soil specimens left for 30 days in plastic containers covered by nylon sheets to control the water content and prevent volatility of contaminant. The results of tests proved that different ratios of kerosene have different impacts on the engineering and chemical characteristics of soil specimens. The specific gravity, percentages of fine particles, optimum water content, the initial and final void ratio, coefficient of consolidation, swelling index, permeability, the undrained shear strength, effective shear strength parameters, and the rate of reduction of initial pore water pressure are reduced significantly with increasing the content of kerosene in soil. Generally, the concentration of kerosene less than 10% has slight impacts on the studied characteristics of soil specimens.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Bingxiang Yuan ◽  
Zengrui Cai ◽  
Mengmeng Lu ◽  
Jianbing Lv ◽  
Zhilei Su ◽  
...  

Based on the theory of rainfall infiltration, the surface infiltration model of multilevel filled slope was established by using the SEEP/W module of GeoStudio. The changes of the volumetric water content (VWC) and pore water pressure (PWP) in the surface of the slope during the rainfall infiltration were analyzed, and the influence of the change of the rainfall conditions on the VWC and PWP was considered. The analysis showed that VWC and PWP increased when the rain fell, and the growth rate of the higher feature point was higher. The affected area was concentrated on the upper part of the surface about 0.75 m. With the increasing of rainfall intensity, the slope surface getting to transient saturation state was quick, and the time of the PWP increasing to 0 among the feature points of same elevation was shortened. Meanwhile, the PWP presented a positive value, and as the infiltration depth increased, the transient saturation region expanded. The safety coefficient of the multistage filled slope was continuously reduced; after the stop of rainfall, the VWC and the PWP decreased, and the decline rate of the higher feature points was higher. In addition, the PWP of the lower part increased, and the safety factor of the slope presented a trend of rebound.


Sign in / Sign up

Export Citation Format

Share Document