scholarly journals Oxidative attack during temperature fluctuation challenge compromises liver protein homeostasis of a temperate fish model

Author(s):  
Sergio Sánchez-Nuño ◽  
Ignasi Sanahuja ◽  
Laura Fernández-Alacid ◽  
Borja Ordóñez-Grande ◽  
Teresa Carbonell ◽  
...  
2019 ◽  
Vol 9 ◽  
Author(s):  
Ignasi Sanahuja ◽  
Laura Fernández-Alacid ◽  
Sergio Sánchez-Nuño ◽  
Borja Ordóñez-Grande ◽  
Antoni Ibarz

1982 ◽  
Vol 242 (3) ◽  
pp. R280-R284
Author(s):  
A. E. Haschemeyer

Uptake of L-[14C]leucine by liver of an endemic Antarctic fish, Trematomus hansoni, was studied by a single injection technique with [3H]inulin as a reference. Rate constants for leucine influx and efflux and incorporation into liver protein were determined by analysis of isotope distribution in the free and protein-bound compartments of liver and in blood draining the liver at various times after injection. Transport rates were slower than in temperate fish at 20 degrees C, but saturation properties and ability to accumulate leucine in liver were comparable. Kinetic analysis indicated that 30% of uptake at 0 degrees C was due to active transport, similar to that in toadfish at 20 degrees C. This contrasts with the absence of this component in toadfish cooled to 10 degrees C. Average polypeptide chain assembly time was 19 min at 0 degrees C. Transport functions were maintained in fish warmed to 10 degrees C; however, protein synthesis declined at temperatures above 5 degrees C. The results indicate this system is adapted to function at extremely low temperatures in a manner qualitatively similar to organisms adapted to much higher temperatures. Transport and synthetic rates, however, were low, consistent with a normal temperature dependency (Q10 about 2.5) for biological reaction rates.


2008 ◽  
Vol 78 (2) ◽  
pp. 64-69 ◽  
Author(s):  
Choi ◽  
Cho

This study investigated the effect of vitamin B6 deficiency on the utilization and recuperation of stored fuel in physically trained rats. 48 rats were given either vitamin B6-deficient (B6–) diet or control (B6+) diet for 4 weeks and were trained on treadmill for 30 minutes daily. All animals were then subdivided into 3 groups: before-exercise (BE); during-exercise (DE); after-exercise (AE). The DE group was exercised on treadmill for 1 hour just before being sacrificed. Animals in the AE group were allowed to take a rest for 2 hours after being exercised like the DE group. Glucose and free fatty acids were compared in plasma. Glycogen and triglyceride were compared in liver and skeletal muscle. Protein levels were compared in plasma, liver, and skeletal muscle. Compared with the B6+ group, plasma glucose levels of the B6– group were significantly lower before and after exercise. Muscle glycogen levels of the B6– group were significantly lower than those of the B6+ group regardless of exercise. The liver glycogen level of the B6– group was also significantly lower than that of B6+ group during and after exercise. Before exercise, plasma free fatty acid levels were not significantly different between the B6+ and B6– groups, and plasma free fatty acid levels of the B6– group were significantly lower during and after exercise. The muscle triglyceride level of the B6– group was significantly lower than that of the B6+ group before exercise, and there were no differences between B6+ and B6– groups during and after exercise. Liver triglyceride levels were not significantly different between B6+ and B6– groups. Plasma protein levels of the B6– group were lower than those of B6+ before and after exercise. Muscle protein levels of the B6– group were not significantly different from those of the B6+ group. Liver protein levels of the B6– group were significantly lower than that of the B6+ group after exercise. Liver protein levels of both B6+ and B6– groups were not significantly changed, regardless of exercise. Thus, it is suggested that vitamin B6 deficiency may reduce fuel storage and utilization with exercise in physically trained rats.


2019 ◽  
Vol 19 (2) ◽  
pp. 112-119 ◽  
Author(s):  
Mariana B. de Oliveira ◽  
Luiz F.G. Sanson ◽  
Angela I.P. Eugenio ◽  
Rebecca S.S. Barbosa-Dantas ◽  
Gisele W.B. Colleoni

Introduction:Multiple myeloma (MM) cells accumulate in the bone marrow and produce enormous quantities of immunoglobulins, causing endoplasmatic reticulum stress and activation of protein handling machinery, such as heat shock protein response, autophagy and unfolded protein response (UPR).Methods:We evaluated cell lines viability after treatment with bortezomib (B) in combination with HSP70 (VER-15508) and autophagy (SBI-0206965) or UPR (STF- 083010) inhibitors.Results:For RPMI-8226, after 72 hours of treatment with B+VER+STF or B+VER+SBI, we observed 15% of viable cells, but treatment with B alone was better (90% of cell death). For U266, treatment with B+VER+STF or with B+VER+SBI for 72 hours resulted in 20% of cell viability and both treatments were better than treatment with B alone (40% of cell death). After both triplet combinations, RPMI-8226 and U266 presented the overexpression of XBP-1 UPR protein, suggesting that it is acting as a compensatory mechanism, in an attempt of the cell to handle the otherwise lethal large amount of immunoglobulin overload.Conclusion:Our in vitro results provide additional evidence that combinations of protein homeostasis inhibitors might be explored as treatment options for MM.


2020 ◽  
Vol 17 ◽  
Author(s):  
Qian Lu ◽  
Hai-Zhu Xing ◽  
Nian-Yun Yang

Background: CCl4 acute liver injury (ALI) is a classical model for experimental research. However, there are few reports involved in the fundamental research of CCl4-induced ALI Ligustri Lucidi Fructus (LLF) are and its prescription have been used to treat hepatitis illness clinically. LLF and its active ingredients displayed anti-hepatitis effects, but the mechanism of function has not been fully clarified Objective: To investigate the proteomic analysis of CCl4-induced ALI, and examine the effects of active total glycosides (TG) from LLF on ALI of mice4, including histopathological survey and proteomic changes of liver tissues, and delineate the possible underlying mechanism. Methods: CCl4 was used to produce ALI mice model. The model mice were intragastrically administrated with TG and the liver his-topathological changes of mice were examined. At the end of test, mice liver samples were collected, after protein denaturation, re-duction, desalination and enzymatic hydrolysis, identification was carried out by nano LC-ESI-OrbiTrap MS/MS technology. The data was processed by Maxquant software. The differentially-expressed proteins were screened and identified, and their biological information was also analyzed based on GO and KEGG analysis. Key protein expression was validated by Western blot analysis Results: A total of 705 differentially-expressed proteins were identified during the normal, model and administration group. 9 signifi-cant differential proteins were focused based on analysis. Liver protein expression changes of CCl4-induced ALI mice were mainly involved in several important signal channels, namely FoxO signaling pathway, autophagy-animal, insulin signaling pathway. TG has anti-liver damnification effect in ALI mice, the mechanism of which is related to FoxO1 and autophagy pathways Conclusion: CCl4 inhibited expression of insulin-Like growth factor 1 (Igf1) and 3-phosphoinositide-dependent protein kinase 1 (Pdpk1) in liver cells and induced insulin resistance, thus interfered with mitochondrial autophagy and regeneration of liver cells and the metabolism of glucose and lipid, and caused hepatic necrosis in mice. TG resisted liver injury in mice. TG adjusted the expression level of key proteins Igf1 and Pdpk1 after liver injury and improved insulin resistance, thus promoted autophagy and resisted the liver damage


Sign in / Sign up

Export Citation Format

Share Document