Comparative evaluation of 4 different BD Vacutainer® blood collection tubes to study the stability of 15 steroid hormones determined by LC-MS/MS

2019 ◽  
Vol 493 ◽  
pp. S702-S703
Author(s):  
C. Le Goff ◽  
C. Nix ◽  
E. Cavalier
2018 ◽  
Vol 54 (1) ◽  
pp. 30-35
Author(s):  
Brian Heiser ◽  
E.B. Okrasinski ◽  
Rebecca Murray ◽  
Kelly McCord

ABSTRACT The initial negative pressures of evacuated blood collection tubes (EBCT) and their in vitro performance as a rigid closed-suction surgical drain (CSSD) reservoir has not been evaluated in the scientific literature despite being described in both human and veterinary texts and journals. The initial negative pressures of EBCT sized 3, 6, 10, and 15 mL were measured and the stability of the system monitored. The pressure-to-volume curve as either air or water was added and maximal filling volumes were measured. Evacuated blood collection tubes beyond the manufacture’s expiration date were evaluated for initial negative pressures and maximal filling volumes. Initial negative pressure ranged from −214 mm Hg to −528 mm Hg for EBCT within the manufacturer’s expiration date. Different pressure-to-volume curves were found for air versus water. Optimal negative pressures of CSSD are debated in the literature. Drain purpose and type of exudates are factors that should be considered when deciding which EBCT size to implement. Evacuated blood collection tubes have a range of negative pressures and pressure-to-volume curves similar to previously evaluated CSSD rigid reservoirs. Proper drain management and using EBCT within labeled expiration date are important to ensure that expected negative pressures are generated.


Author(s):  
Nadia Ayala-Lopez ◽  
Steven E. Conklin data analysis ◽  
Brandon J. Tenney ◽  
Maryann Ness ◽  
Mark A. Marzinke

1984 ◽  
Vol 30 (4) ◽  
pp. 553-556 ◽  
Author(s):  
J Toffaletti ◽  
N Blosser ◽  
K Kirvan

Abstract We studied the stability of ionized calcium and pH in samples stored at either room temperature or 4 degrees C, in centrifuged and uncentrifuged blood-collection tubes and in centrifuged tubes containing a silicone-separator gel (SST tubes). At room temperature, in uncentrifuged blood from healthy individuals, mean ionized calcium usually increased no more than 10 mumol/L per hour; at 4 degrees C it did not change detectably for 70 h. This stability was fortuitous, however: the concentrations of both hydrogen and lactate ions in these samples increased, apparently with offsetting effects on the concentration of ionized calcium. Blood stored for 70 h at 4 degrees C in centrifuged SST tubes, although showing a slightly greater change in ionized calcium, had less change of pH and no change in the ionized calcium corrected to pH 7.4. In 11 heparinized whole-blood samples from eight patients in intensive care, the mean change per hour in ionized calcium and pH after storage at room temperature was +10 mumol/L and -0.04 units, respectively.


1998 ◽  
Vol 44 (6) ◽  
pp. 1325-1333 ◽  
Author(s):  
Dongbo J Zhang ◽  
R K Elswick ◽  
W Greg Miller ◽  
Jimmy L Bailey

Abstract The effect of serum-clot contact time on laboratory results was studied by dividing each blood specimen into four blood collection tubes. The control sera were separated from the clot within 30 min of the collection. The other tubes were incubated at 32 °C, and the sera were separated at 3, 6, and 24 h. The sera were stored at 4 °C and analyzed at the same time. The stability of the tests was determined by comparing the results of the 3-, 6-, and 24-h samples with the values from the 30-min samples. The acceptable limits around the 30-min values were derived from the analytical and intraindividual biological variation of the tests. A total of 63 analytes were studied. Potassium, phosphorous, and glucose were the least stable, and the serum should be separated from the clot within 3 h for these analytes. Albumin, bicarbonate, chloride, C-peptide, HDL-cholesterol, iron, LDL-cholesterol, and total protein should be separated within 6 h. The other analytes were stable for 24 h of serum-clot contact.


Author(s):  
T. K. Teal ◽  
M. Reed ◽  
P. E. Stevens ◽  
E. J. Lamb

Background: The stability of parathyroid hormone (PTH) in blood ex vivo is a significant practical problem for laboratories and clinicians. Several studies have suggested that PTH is more stable in blood collected into a potassium edetate (EDTA) preservative. Methods: To confirm that this was applicable to renal dialysis patients using our assay (Nichols chemiluminescence), we examined PTH stability in 13 patients with end-stage renal failure using three different blood collection tubes. Results: PTH remained stable in EDTA plasma for up to 48 h at room temperature. PTH was significantly reduced in serum collected into plain tubes after 2 h, and after 4 h in serum collected into serum separator tubes, at room temperature. Conclusion: In the assessment of renal osteodystrophy, the use of EDTA plasma can confer significant benefit, especially in busy laboratories where rapid frozen separation of blood may be hard to achieve.


2017 ◽  
Vol 19 (5) ◽  
pp. 801-804 ◽  
Author(s):  
Christina Alidousty ◽  
Danielle Brandes ◽  
Carina Heydt ◽  
Svenja Wagener ◽  
Maike Wittersheim ◽  
...  

2022 ◽  
Vol 11 (2) ◽  
pp. 320
Author(s):  
Philipp Helmer ◽  
Sebastian Hottenrott ◽  
Andreas Steinisch ◽  
Daniel Röder ◽  
Jörg Schubert ◽  
...  

Background: Anemia remains one of the most common comorbidities in intensive care patients worldwide. The cause of anemia is often multifactorial and triggered by underlying disease, comorbidities, and iatrogenic factors, such as diagnostic phlebotomies. As anemia is associated with a worse outcome, especially in intensive care patients, unnecessary iatrogenic blood loss must be avoided. Therefore, this scoping review addresses the amount of blood loss during routine phlebotomies in adult (>17 years) intensive care patients and whether there are factors that need to be improved in terms of patient blood management (PBM). Methods: A systematic search of the Medline Database via PubMed was conducted according to PRISMA guidelines. The reported daily blood volume for diagnostics and other relevant information from eligible studies were charted. Results: A total of 2167 studies were identified in our search, of which 38 studies met the inclusion criteria (9 interventional studies and 29 observational studies). The majority of the studies were conducted in the US (37%) and Canada (13%). An increasing interest to reduce iatrogenic blood loss has been observed since 2015. Phlebotomized blood volume per patient per day was up to 377 mL. All interventional trials showed that the use of pediatric-sized blood collection tubes can significantly reduce the daily amount of blood drawn. Conclusion: Iatrogenic blood loss for diagnostic purposes contributes significantly to the development and exacerbation of hospital-acquired anemia. Therefore, a comprehensive PBM in intensive care is urgently needed to reduce avoidable blood loss, including blood-sparing techniques, regular advanced training, and small-volume blood collection tubes.


Sign in / Sign up

Export Citation Format

Share Document