Quantum dots-hydrogel composites for biomedical applications

Author(s):  
Wenjie Zhou ◽  
Zhe Hu ◽  
Jinxin Wei ◽  
Hanqing Dai ◽  
Yuanyuan Chen ◽  
...  
Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 906
Author(s):  
Le Minh Tu Phan ◽  
Thuy Anh Thu Vo ◽  
Thi Xoan Hoang ◽  
Sungbo Cho

Recently, photothermal therapy (PTT) has emerged as one of the most promising biomedical strategies for different areas in the biomedical field owing to its superior advantages, such as being noninvasive, target-specific and having fewer side effects. Graphene-based hydrogels (GGels), which have excellent mechanical and optical properties, high light-to-heat conversion efficiency and good biocompatibility, have been intensively exploited as potential photothermal conversion materials. This comprehensive review summarizes the current development of graphene-integrated hydrogel composites and their application in photothermal biomedicine. The latest advances in the synthesis strategies, unique properties and potential applications of photothermal-responsive GGel nanocomposites in biomedical fields are introduced in detail. This review aims to provide a better understanding of the current progress in GGel material fabrication, photothermal properties and potential PTT-based biomedical applications, thereby aiding in more research efforts to facilitate the further advancement of photothermal biomedicine.


2021 ◽  
Author(s):  
Lakshmi Narashimhan Ramana ◽  
Le N.M. Dinh ◽  
Vipul Agarwal

Graphene quantum dots (GQDs) continue to draw interest in biomedical applications. However, their efficacy gets compromised due to their rapid clearance from body. On one side, rapid clearance is desired...


RSC Advances ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 2253-2291
Author(s):  
Amin Shiralizadeh Dezfuli ◽  
Elmira Kohan ◽  
Sepand Tehrani Fateh ◽  
Neda Alimirzaei ◽  
Hamidreza Arzaghi ◽  
...  

Organic dots is a term used to represent materials including graphene quantum dots and carbon quantum dots because they rely on the presence of other atoms (O, H, and N) for their photoluminescence or fluorescence properties. Cargo delivery, bio-imaging, photodynamic therapy and photothermal therapy are major biomedical applications of organic dots.


Nanoscale ◽  
2015 ◽  
Vol 7 (48) ◽  
pp. 20460-20473 ◽  
Author(s):  
Tianshu Wu ◽  
Keyu He ◽  
Qinglin Zhan ◽  
Shengjun Ang ◽  
Jiali Ying ◽  
...  

As quantum dots (QDs) are widely used in biomedical applications, the number of studies focusing on their biological properties is increasing.


Life Sciences ◽  
2018 ◽  
Vol 194 ◽  
pp. 185-195 ◽  
Author(s):  
Ghareib W. Ali ◽  
W. El-Hotaby ◽  
Bahaa Hemdan ◽  
Wafa I. Abdel-Fattah

2015 ◽  
Vol 43 (4) ◽  
pp. 277-296 ◽  
Author(s):  
Xenia Meshik ◽  
Sidra Farid ◽  
Min Choi ◽  
Yi Lan ◽  
Souvik Mukherjee ◽  
...  

2018 ◽  
Vol 25 (25) ◽  
pp. 2876-2893 ◽  
Author(s):  
Keheng Li ◽  
Xinna Zhao ◽  
Gang Wei ◽  
Zhiqiang Su

Fluorescent graphene quantum dots (GQDs) have attracted increasing interest in cancer bioimaging due to their stable photoluminescence (PL), high stability, low cytotoxicity, and good biocompatibility. In this review, we present the synthesis and chemical modification of GQDs firstly, and then introduce their unique physical, chemical, and biological properties like the absorption, PL, and cytotoxicity of GQDs. Finally and most importantly, the recent applications of GQDs in cancer bioimaging are demonstrated in detail, in which we focus on the biofunctionalization of GQDs for specific cancer cell imaging and real-time molecular imaging in live cells. We expect this work would provide valuable guides on the synthesis and modification of GQDs with adjustable properties for various biomedical applications in the future.


Sign in / Sign up

Export Citation Format

Share Document