Metal nanoparticles supported on two-dimensional graphenes as heterogeneous catalysts

2016 ◽  
Vol 312 ◽  
pp. 99-148 ◽  
Author(s):  
Sergio Navalon ◽  
Amarajothi Dhakshinamoorthy ◽  
Mercedes Alvaro ◽  
Hermenegildo Garcia
2015 ◽  
Vol 44 (19) ◽  
pp. 8906-8916 ◽  
Author(s):  
Sankar Das ◽  
Subhra Jana

Halloysite/metal nanocomposites have been synthesized through the immobilization of preformed and in situ synthesized metal nanoparticles over halloysite surfaces, which in turn produce efficient, cost-effective, and environmentally benign heterogeneous catalysts.


Langmuir ◽  
2018 ◽  
Vol 34 (43) ◽  
pp. 13025-13034 ◽  
Author(s):  
Shihomi Masuda ◽  
Salomé Mielke ◽  
Federico Amadei ◽  
Akihisa Yamamoto ◽  
Pangpang Wang ◽  
...  

Author(s):  
Shan Dai ◽  
Kieu Phung Ngoc ◽  
Laurence Grimaud ◽  
Sanjun Zhang ◽  
Antoine Tissot ◽  
...  

Metal nanoparticles encased in a MOF shell have shown remarkable properties in catalysis due to potential synergistic effects. However, capping agents, commonly used to prepare these nanoparticles, lower their reactivity...


2021 ◽  
Vol 01 ◽  
Author(s):  
Sharwari K. Mengane ◽  
Ronghui Wu ◽  
Liyun Ma ◽  
Chhaya S. Panse ◽  
Shailesh N. Vajekar ◽  
...  

: Catalysis is the multidisciplinary field involving many areas of chemistry, notably in organometallic chemistry and materials science. It has great applications in synthesis of many industrially applicable compounds such as fuels and fine chemicals. The activity and selectivity are a key issue in catalysis that generally allied to high surface area. The current research activities mainly deal with the homogeneous and heterogeneous catalysis. Homogeneous and heterogeneous catalysis have certain drawbacks which restricts their application to great extent but have their own advantages. Hence, it has a predominant concern of current research to find out an alternate to overcome their drawbacks. Therefore, it is highly desirable to find a catalytic protocol that offers high selectivity and excellent product yield with quick and easy recovery. Along with their various applications as alternatives to conventional bulk materials nanomaterial have established its great role in different industrial and scientific applications. Nanocatalysis has emerged as new alternative to the conventional homogeneous and heterogeneous catalysis. The nanomaterials are responsible to enhance surface area of the catalyst, which ultimately increases the catalyst reactants contacts. In addition, it acts as robust material and has high surface area like heterogeneous catalysts. Insolubility of such nanomaterial in reaction medium makes them easily separable, hence, catalyst can be easily separate from the product. Hence, it has been proven that nanocatalysts behave like homogeneous as well as heterogeneous catalysts which work as a bridge between the conventional catalytic systems. Considering these merits; researchers has paid their attention towards applications of nanocatalyst in several organic reactions. This review article focused on the catalytic applications of metal nanoparticles (MNPs) such as Pd, Ag, Au, Cu, Pt in ligand free coupling reactions. In addition, it covers applications of bimetallic and multimetallic nanoparticles in ligand free coupling reactions.


2020 ◽  
Vol 56 (46) ◽  
pp. 6229-6232 ◽  
Author(s):  
Yong Liu ◽  
Juanjuan Li ◽  
Wei Zhang

A liquid metal-assisted exfoliation strategy is developed for synthesizing two-dimensional polydopamine nanosheets.


2016 ◽  
Vol 18 (29) ◽  
pp. 19621-19630 ◽  
Author(s):  
Janis Timoshenko ◽  
Atal Shivhare ◽  
Robert W. J. Scott ◽  
Deyu Lu ◽  
Anatoly I. Frenkel

XANES analysis guided by ab initio modeling is proposed for refinement of local environments around metal impurities in heterogeneous catalysts.


2020 ◽  
Vol 10 (8) ◽  
pp. 2692
Author(s):  
Anirban Karmakar ◽  
Luísa M.D.R.S. Martins ◽  
Yuliya Yahorava ◽  
M. Fátima C. Guedes da Silva ◽  
Armando J. L. Pombeiro

The synthesis and characterization of a set of iron(III) complexes, viz. the mononuclear [Fe(L)3] (1) and [NHEt3][Fe(L)2(Cl)2] (2), the dinuclear methoxido-bridged [Fe(L)2(μ-OMe)]2.DMF.1.5MeOH (3), and the heteronuclear Fe(III)/Na(I) two-dimensional coordination polymer [Fe(N3)(μ-L)2(μ-O)1/2(Na)(μ-H2O)1/2]n (4), are reported. Reactions of 3-amino-2-pyrazinecarboxylic acid (HL) with iron(III) chloride under different reaction conditions were studied, and the obtained compounds were characterized by elemental analysis, Fourier Transform Infrared (FT-IR) spectroscopy, and X-ray single-crystal diffraction. Compound 1 is a neutral mononuclear complex, whereas 2 is mono-anionic with its charge being neutralized by triethylammonium cation. Compounds 3 and 4 display a di-methoxido-bridged dinuclear complex and a two-dimensional heterometallic Fe(III)/Na(I) polynuclear coordination polymer, respectively. Compounds 3 and 4 are the first examples of methoxido- and oxido-bridged iron(III) complexes, respectively, with 3-amino-2-pyrazinecarboxylate ligands. The electrochemical study of these compounds reveals a facile single-electron reversible Fe(III)-to-Fe(II) reduction at a positive potential of 0.08V vs. saturated calomel electrode (SCE), which is in line with their ability to act as efficient oxidants and heterogeneous catalysts for the solvent-free microwave-assisted peroxidative oxidation (with tert-butyl hydroperoxide) of cyclohexanol to cyclohexanone (almost quantitative yields after 1 h). Moreover, the catalysts are easily recovered and reused for five consecutive cycles, maintaining a high activity and selectivity.


2012 ◽  
Vol 48 (15) ◽  
pp. 2119 ◽  
Author(s):  
Chunpeng Song ◽  
Dongqing Wu ◽  
Fan Zhang ◽  
Ping Liu ◽  
Qinghua Lu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document