Mechanisms of shale gas adsorption: Evidence from thermodynamics and kinetics study of methane adsorption on shale

2019 ◽  
Vol 361 ◽  
pp. 559-570 ◽  
Author(s):  
Lei Chen ◽  
Luo Zuo ◽  
Zhenxue Jiang ◽  
Shu Jiang ◽  
Keyu Liu ◽  
...  
SPE Journal ◽  
2016 ◽  
Vol 21 (02) ◽  
pp. 589-600 ◽  
Author(s):  
Wei Yu ◽  
Kamy Sepehrnoori ◽  
Tadeusz W. Patzek

Summary Production from shale-gas reservoirs plays an important role in natural-gas supply in the United States. Horizontal drilling and multistage hydraulic fracturing are the two key enabling technologies for the economic development of these shale-gas reservoirs. It is believed that gas in shale reservoirs is mainly composed of free gas within fractures and pores and adsorbed gas in organic matter (kerogen). It is generally assumed in the literature that the monolayer Langmuir isotherm describes gas-adsorption behavior in shale-gas reservoirs. However, in this work, we analyzed four experimental measurements of methane adsorption from the Marcellus Shale core samples that deviate from the Langmuir isotherm, but obey the Brunauer-Emmett-Teller (BET) isotherm. To the best of our knowledge, it is the first time to find that methane adsorption in a shale-gas reservoir behaves similar to multilayer adsorption. Consequently, investigation of this specific gas-desorption effect is important for accurate evaluation of well performance and completion effectiveness in shale-gas reservoirs on the basis of the BET isotherm. The difference in calculating original gas in place (OGIP) on the basis of both isotherms is discussed. We also performed history matching with one production well from the Marcellus Shale and evaluated the contribution of gas desorption to the well's performance. History matching shows that gas adsorption obeying the BET isotherm contributes more to overall gas recovery than gas adsorption obeying the Langmuir isotherm, especially at early time in production. This work provides better understanding of gas desorption in shale-gas reservoirs and updates our current analytical and numerical models for simulation of shale-gas production.


2021 ◽  
Vol 9 ◽  
Author(s):  
Lei Chen ◽  
Zhenxue Jiang ◽  
Shu Jiang ◽  
Song Guo ◽  
Jingqiang Tan

The presence and content of water will certainly affect the gas adsorption capacity of shale and the evaluation of shale gas content. In order to reasonably evaluate the gas adsorption capacity of shale under actual reservoir conditions, the effect of water on methane adsorption capacity needs to be investigated. Taking the Da’anzhai Member of the Lower Jurassic Ziliujing Formation in the northeastern Sichuan Basin, China as an example, this study attempts to reveal the effect of pre-adsorbed water on methane adsorption capacity in shale-gas systems by conducting methane adsorption experiments in two sequences, firstly at different temperatures under dry condition and secondly at different relative humidity levels under the same temperature. The results show that temperature and relative humidity (i.e., water saturation) are the main factors affecting the methane adsorption capacity of shale for a single sample. The key findings of this study include: 1) Methane adsorption capacity of shale first increases then decreases with depth, reaching a peak at about 1,600–2,400 m. 2) Lower relative humidity correlates to greater maximum methane adsorption capacity and greater depth to reach the maximum methane adsorption capacity. 3) 20% increase of relative humidity results in roughly 10% reduction of maximum methane adsorption capacity. As a conclusion, methane adsorption capacity of shale is predominately affected by water saturation, pore type and pore size of shale. This study could provide a theoretical basis for the establishment of a reasonable evaluation method for shale adsorbed gas content.


2012 ◽  
Vol 482-484 ◽  
pp. 627-632
Author(s):  
Heng Liu ◽  
Yu Qing Xiong ◽  
Ji Zhou Wang

In this paper, feasibility of aluminium deposition on inner wall of pipes by atomic layer deposition was studied. Firstly, by solving kinetics equation of gas adsorption on the pipe inner wall, the time for the reactant to reach saturated adsorption on the wall was calculated. Secondly, according to the aluminium crystal structure, the thickness of each deposition cycle was obtained. Finally, the minimum aluminium thickness and number of atomic layer deposition cycles that can meet electromagnetic requirement of wave guide was calculated.


Geofluids ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Run Chen ◽  
Yong Qin ◽  
Pengfei Zhang ◽  
Youyang Wang

The pore structure and gas adsorption are two key issues that affect the coal bed methane recovery process significantly. To change pore structure and gas adsorption, 5 coals with different ranks were treated by CS2 for 3 h using a Soxhlet extractor under ultrasonic oscillation conditions; the evolutions of pore structure and methane adsorption were examined using a high-pressure mercury intrusion porosimeter (MIP) with an AutoPore IV 9310 series mercury instrument. The results show that the cumulative pore volume and specific surface area (SSA) were increased after CS2 treatment, and the incremental micropore volume and SSA were increased and decreased before and after Ro,max=1.3%, respectively; the incremental big pore (greater than 10 nm in diameter) volumes were increased and SSA was decreased for all coals, and pore connectivity was improved. Methane adsorption capacity on coal before and after Ro,max=1.3% also was increased and decreased, respectively. There is a positive correlation between the changes in the micropore SSA and the Langmuir volume. It confirms that the changes in pore structure and methane adsorption capacity due to CS2 treatment are controlled by the rank, and the change in methane adsorption is impacted by the change of micropore SSA and suggests that the changes in pore structure are better for gas migration; the alteration in methane adsorption capacity is worse and better for methane recovery before and after Ro,max=1.3%. A conceptual mechanism of pore structure is proposed to explain methane adsorption capacity on CS2 treated coal around the Ro,max=1.3%.


Computation ◽  
2015 ◽  
Vol 3 (4) ◽  
pp. 687-700 ◽  
Author(s):  
Hongguang Sui ◽  
Jun Yao ◽  
Lei Zhang

Sign in / Sign up

Export Citation Format

Share Document