Electrospun Fiber-based High-Performance Flexible Multi-level Micro-structured Pressure Sensor: Design, Development and Modelling

2021 ◽  
pp. 133700
Author(s):  
Shuo Yang ◽  
Kai Ding ◽  
Wei Wang ◽  
Tianyi Wang ◽  
Huiling Gong ◽  
...  
Author(s):  
FRANCISCO ARTHUR BONFIM AZEVEDO ◽  
Daniela Vacarini de Faria ◽  
Marcos Maximo ◽  
Mauricio Donadon

2020 ◽  
Vol 15 ◽  
Author(s):  
Weiwen Zhang ◽  
Long Wang ◽  
Theint Theint Aye ◽  
Juniarto Samsudin ◽  
Yongqing Zhu

Background: Genotype imputation as a service is developed to enable researchers to estimate genotypes on haplotyped data without performing whole genome sequencing. However, genotype imputation is computation intensive and thus it remains a challenge to satisfy the high performance requirement of genome wide association study (GWAS). Objective: In this paper, we propose a high performance computing solution for genotype imputation on supercomputers to enhance its execution performance. Method: We design and implement a multi-level parallelization that includes job level, process level and thread level parallelization, enabled by job scheduling management, message passing interface (MPI) and OpenMP, respectively. It involves job distribution, chunk partition and execution, parallelized iteration for imputation and data concatenation. Due to the design of multi-level parallelization, we can exploit the multi-machine/multi-core architecture to improve the performance of genotype imputation. Results: Experiment results show that our proposed method can outperform the Hadoop-based implementation of genotype imputation. Moreover, we conduct the experiments on supercomputers to evaluate the performance of the proposed method. The evaluation shows that it can significantly shorten the execution time, thus improving the performance for genotype imputation. Conclusion: The proposed multi-level parallelization, when deployed as an imputation as a service, will facilitate bioinformatics researchers in Singapore to conduct genotype imputation and enhance the association study.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sera Kwon ◽  
Min-Jung Kim ◽  
Kwun-Bum Chung

AbstractTiOx-based resistive switching devices have recently attracted attention as a promising candidate for next-generation non-volatile memory devices. A number of studies have attempted to increase the structural density of resistive switching devices. The fabrication of a multi-level switching device is a feasible method for increasing the density of the memory cell. Herein, we attempt to obtain a non-volatile multi-level switching memory device that is highly transparent by embedding SiO2 nanoparticles (NPs) into the TiOx matrix (TiOx@SiO2 NPs). The fully transparent resistive switching device is fabricated with an ITO/TiOx@SiO2 NPs/ITO structure on glass substrate, and it shows transmittance over 95% in the visible range. The TiOx@SiO2 NPs device shows outstanding switching characteristics, such as a high on/off ratio, long retention time, good endurance, and distinguishable multi-level switching. To understand multi-level switching characteristics by adjusting the set voltages, we analyze the switching mechanism in each resistive state. This method represents a promising approach for high-performance non-volatile multi-level memory applications.


Author(s):  
Srikanth M. Kannapan ◽  
Dean L. Taylor

Abstract Naive interpretations of concurrent engineering may expect extreme parallelization of tasks and simultaneous accommodation of multiple perspectives. In fact, from our efforts at modeling tasks in a MEMS (Micro-Electro-Mechanical Systems) pressure sensor design project, it appears that data dependencies due to the structure of tasks and the product itself result in scenarios of decision and action that must be carefully coordinated. This paper refines a previously described information model for defining evolving contexts of product model aspects and team member perspectives, with software agents acting on behalf of team members to execute tasks. The pressure sensor design project is analyzed in the framework of the information model. A scenario of decision and action for design of the pressure sensor is modeled as a design process plan. Conflict on a shared parameter occurs as a consequence of introducing some parallelism between the capacitance and deflection agents in the process. We present a technique for negotiating such conflicts by definition and propagation of utility functions on decision parameters and axiomatic negotiation.


Polymers ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1178 ◽  
Author(s):  
Yanping Liu ◽  
Hanghang Wei ◽  
Zhen Wang ◽  
Qian Li ◽  
Nan Tian

The mechanical properties of poly (lactic acid) (PLA) nanofibers with 0%, 5%, 10%, and 20% (w/w) poly (vinyl alcohol) (PVA) were investigated at the macro- and microscale. The macro-mechanical properties for the fiber membrane revealed that both the modulus and fracture strain could be improved by 100% and 70%, respectively, with a PVA content of 5%. The variation in modulus and fracture strain versus the diameter of a single electrospun fiber presented two opposite trends, while simultaneous enhancement was observed when the content of PVA was 5% and 10%. With a diameter of 1 μm, the strength and toughness of the L95V5 and L90V10 fibers were enhanced to over 3 and 2 times that of pure PLA, respectively. The structural evolution of electrospun nanofiber was analyzed by differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR). Although PLA and PVA were still miscible in the concentration range used, the latter could crystallize independently after electrospinning. According to the crystallization behavior of the nanofibers, a double network formed by PLA and PVA—one microcrystal/ordered structure and one amorphous structure—is proposed to contribute to the simultaneous enhancement of strength and toughness, which provides a promising method for preparing biodegradable material with high performance.


Energies ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 804 ◽  
Author(s):  
Hyunsook Shim ◽  
Taeyeon Kim ◽  
Gyunghyun Choi

As quality of life has improved, the need for high-performance building materials that meet specific technological requirements has increased. Residential environments have also changed owing to climate change. A technology roadmap could define and systematically reflect a timeline for the development of future core technologies. The purpose of this research is to build a technology roadmap that could be utilized for the development of technology in the eco-friendly building material industry. This research is composed of multiple analysis processes—patent analysis, Delphi, and analytic hierarchy process analysis—that minimize the uncertainty caused by the lack of information in the eco-friendly construction industry by securing objective future forecast data. Subsequently, the quality function deployment test is implemented to verify the feasibility of the technology roadmap that is constructed. The design of various types of functional, low-carbon building materials could reduce carbon emissions and save energy by ensuring a hazardous-material-free market in the future. This design development roadmap is required to complement this technology roadmap.


Micromachines ◽  
2018 ◽  
Vol 9 (9) ◽  
pp. 438 ◽  
Author(s):  
Youngsang Ko ◽  
Dabum Kim ◽  
Goomin Kwon ◽  
Jungmok You

Improved pressure sensing is of great interest to enable the next-generation of bioelectronics systems. This paper describes the development of a transparent, flexible, highly sensitive pressure sensor, having a composite sandwich structure of elastic silver nanowires (AgNWs) and poly(ethylene glycol) (PEG). A simple PEG photolithography was employed to construct elastic AgNW-PEG composite patterns on flexible polyethylene terephthalate (PET) film. A porous PEG hydrogel structure enabled the use of conductive AgNW patterns while maintaining the elasticity of the composite material, features that are both essential for high-performance pressure sensing. The transparency and electrical properties of AgNW-PEG composite could be precisely controlled by varying the AgNW concentration. An elastic AgNW-PEG composite hydrogel with 0.6 wt % AgNW concentration exhibited high transmittance including T550nm of around 86%, low sheet resistance of 22.69 Ω·sq−1, and excellent bending durability (only 5.8% resistance increase under bending to 10 mm radius). A flexible resistive pressure sensor based on our highly transparent AgNW-PEG composite showed stable and reproducible response, high sensitivity (69.7 kPa−1), low sensing threshold (~2 kPa), and fast response time (20–40 ms), demonstrating the effectiveness of the AgNW-PEG composite material as an elastic conductor.


Sign in / Sign up

Export Citation Format

Share Document